Spaces:
Running
on
Zero
Running
on
Zero
Commit
•
49ad6a5
1
Parent(s):
86d5e88
Hopefully reduce overhead between users
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
|
|
3 |
from PIL import Image
|
4 |
import random
|
5 |
from diffusers import (
|
@@ -95,7 +96,15 @@ def check_inputs(prompt: str, control_image: Image.Image):
|
|
95 |
raise gr.Error("Please select or upload an Input Illusion")
|
96 |
if prompt is None or prompt == "":
|
97 |
raise gr.Error("Prompt is required")
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
# Inference function
|
100 |
def inference(
|
101 |
control_image: Image.Image,
|
@@ -156,10 +165,8 @@ def inference(
|
|
156 |
end_time_struct = time.localtime(end_time)
|
157 |
end_time_formatted = time.strftime("%H:%M:%S", end_time_struct)
|
158 |
print(f"Inference ended at {end_time_formatted}, taking {end_time-start_time}s")
|
159 |
-
return out_image["images"][0], gr.update(visible=True), my_seed
|
160 |
|
161 |
-
#return out
|
162 |
-
|
163 |
with gr.Blocks(css=css) as app:
|
164 |
gr.Markdown(
|
165 |
'''
|
@@ -173,7 +180,8 @@ with gr.Blocks(css=css) as app:
|
|
173 |
Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: [MrUgleh](https://twitter.com/MrUgleh) for discovering the workflow :)
|
174 |
'''
|
175 |
)
|
176 |
-
|
|
|
177 |
with gr.Row():
|
178 |
with gr.Column():
|
179 |
control_image = gr.Image(label="Input Illusion", type="pil", elem_id="control_image")
|
@@ -198,14 +206,26 @@ with gr.Blocks(css=css) as app:
|
|
198 |
share_button = gr.Button("Share to community", elem_id="share-btn")
|
199 |
|
200 |
history = show_gallery_history()
|
201 |
-
prompt.
|
202 |
check_inputs,
|
203 |
inputs=[prompt, control_image],
|
204 |
queue=False
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
).success(
|
206 |
inference,
|
207 |
-
inputs=[
|
208 |
-
outputs=[result_image, share_group, used_seed]
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
).success(
|
210 |
fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
|
211 |
)
|
@@ -213,10 +233,22 @@ with gr.Blocks(css=css) as app:
|
|
213 |
check_inputs,
|
214 |
inputs=[prompt, control_image],
|
215 |
queue=False
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
).success(
|
217 |
inference,
|
218 |
-
inputs=[
|
219 |
-
outputs=[result_image, share_group, used_seed]
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
).success(
|
221 |
fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
|
222 |
)
|
@@ -224,4 +256,4 @@ with gr.Blocks(css=css) as app:
|
|
224 |
app.queue(max_size=20)
|
225 |
|
226 |
if __name__ == "__main__":
|
227 |
-
app.launch(max_threads=
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
from gradio import processing_utils, utils
|
4 |
from PIL import Image
|
5 |
import random
|
6 |
from diffusers import (
|
|
|
96 |
raise gr.Error("Please select or upload an Input Illusion")
|
97 |
if prompt is None or prompt == "":
|
98 |
raise gr.Error("Prompt is required")
|
99 |
+
|
100 |
+
def convert_to_pil(base64_image):
|
101 |
+
pil_image = processing_utils.decode_base64_to_image(base64_image)
|
102 |
+
return pil_image
|
103 |
+
|
104 |
+
def convert_to_base64(pil_image):
|
105 |
+
base64_image = processing_utils.encode_pil_to_base64(pil_image)
|
106 |
+
return base64_image
|
107 |
+
|
108 |
# Inference function
|
109 |
def inference(
|
110 |
control_image: Image.Image,
|
|
|
165 |
end_time_struct = time.localtime(end_time)
|
166 |
end_time_formatted = time.strftime("%H:%M:%S", end_time_struct)
|
167 |
print(f"Inference ended at {end_time_formatted}, taking {end_time-start_time}s")
|
168 |
+
return out_image["images"][0], gr.update(visible=True), gr.update(visible=True), my_seed
|
169 |
|
|
|
|
|
170 |
with gr.Blocks(css=css) as app:
|
171 |
gr.Markdown(
|
172 |
'''
|
|
|
180 |
Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: [MrUgleh](https://twitter.com/MrUgleh) for discovering the workflow :)
|
181 |
'''
|
182 |
)
|
183 |
+
state_img_input = gr.State()
|
184 |
+
state_img_output = gr.State()
|
185 |
with gr.Row():
|
186 |
with gr.Column():
|
187 |
control_image = gr.Image(label="Input Illusion", type="pil", elem_id="control_image")
|
|
|
206 |
share_button = gr.Button("Share to community", elem_id="share-btn")
|
207 |
|
208 |
history = show_gallery_history()
|
209 |
+
prompt.click(
|
210 |
check_inputs,
|
211 |
inputs=[prompt, control_image],
|
212 |
queue=False
|
213 |
+
).success(
|
214 |
+
convert_to_pil,
|
215 |
+
inputs=[control_image],
|
216 |
+
outputs=[state_img_input],
|
217 |
+
queue=False,
|
218 |
+
preprocess=Falgse,
|
219 |
).success(
|
220 |
inference,
|
221 |
+
inputs=[state_img_input, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
|
222 |
+
outputs=[state_img_output, result_image, share_group, used_seed]
|
223 |
+
).success(
|
224 |
+
convert_to_base64,
|
225 |
+
inputs=[state_img_output],
|
226 |
+
outputs=[result_image],
|
227 |
+
queue=False,
|
228 |
+
postprocess=False
|
229 |
).success(
|
230 |
fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
|
231 |
)
|
|
|
233 |
check_inputs,
|
234 |
inputs=[prompt, control_image],
|
235 |
queue=False
|
236 |
+
).success(
|
237 |
+
convert_to_pil,
|
238 |
+
inputs=[control_image],
|
239 |
+
outputs=[state_img_input],
|
240 |
+
queue=False,
|
241 |
+
preprocess=False,
|
242 |
).success(
|
243 |
inference,
|
244 |
+
inputs=[state_img_input, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
|
245 |
+
outputs=[state_img_output, result_image, share_group, used_seed]
|
246 |
+
).success(
|
247 |
+
convert_to_base64,
|
248 |
+
inputs=[state_img_output],
|
249 |
+
outputs=[result_image],
|
250 |
+
queue=False,
|
251 |
+
postprocess=False
|
252 |
).success(
|
253 |
fn=fetch_gallery_history, inputs=[prompt, result_image], outputs=history, queue=False
|
254 |
)
|
|
|
256 |
app.queue(max_size=20)
|
257 |
|
258 |
if __name__ == "__main__":
|
259 |
+
app.launch(max_threads=400)
|