Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
from diffusers import (
|
6 |
+
StableDiffusionPipeline,
|
7 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
8 |
+
ControlNetModel,
|
9 |
+
DDIMScheduler,
|
10 |
+
DPMSolverMultistepScheduler,
|
11 |
+
DEISMultistepScheduler,
|
12 |
+
HeunDiscreteScheduler,
|
13 |
+
EulerDiscreteScheduler,
|
14 |
+
)
|
15 |
+
|
16 |
+
# Initialize ControlNet model
|
17 |
+
controlnet = ControlNetModel.from_pretrained(
|
18 |
+
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
|
19 |
+
)
|
20 |
+
|
21 |
+
# Initialize pipeline
|
22 |
+
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
|
23 |
+
"XpucT/Deliberate",
|
24 |
+
controlnet=controlnet,
|
25 |
+
safety_checker=None,
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
).to("cuda")
|
28 |
+
pipe.enable_xformers_memory_efficient_attention()
|
29 |
+
|
30 |
+
# Sampler configurations
|
31 |
+
SAMPLER_MAP = {
|
32 |
+
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
33 |
+
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
34 |
+
}
|
35 |
+
|
36 |
+
# Inference function
|
37 |
+
def inference(
|
38 |
+
input_image: Image.Image,
|
39 |
+
prompt: str,
|
40 |
+
negative_prompt: str,
|
41 |
+
guidance_scale: float = 10.0,
|
42 |
+
controlnet_conditioning_scale: float = 1.0,
|
43 |
+
strength: float = 0.8,
|
44 |
+
seed: int = -1,
|
45 |
+
sampler = "DPM++ Karras SDE",
|
46 |
+
):
|
47 |
+
if prompt is None or prompt == "":
|
48 |
+
raise gr.Error("Prompt is required")
|
49 |
+
|
50 |
+
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)
|
51 |
+
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
|
52 |
+
|
53 |
+
out = pipe(
|
54 |
+
prompt=prompt,
|
55 |
+
negative_prompt=negative_prompt,
|
56 |
+
image=input_image,
|
57 |
+
control_image=input_image, # type: ignore
|
58 |
+
width=512, # type: ignore
|
59 |
+
height=512, # type: ignore
|
60 |
+
guidance_scale=float(guidance_scale),
|
61 |
+
controlnet_conditioning_scale=float(controlnet_conditioning_scale), # type: ignore
|
62 |
+
generator=generator,
|
63 |
+
strength=float(strength),
|
64 |
+
num_inference_steps=40,
|
65 |
+
)
|
66 |
+
return out.images[0] # type: ignore
|
67 |
+
|
68 |
+
# Gradio UI
|
69 |
+
with gr.Blocks() as app:
|
70 |
+
gr.Markdown(
|
71 |
+
'''
|
72 |
+
# Illusion Diffusion
|
73 |
+
## A simple UI for generating beatiful illusion art with Stable Diffusion 1.5
|
74 |
+
'''
|
75 |
+
)
|
76 |
+
|
77 |
+
with gr.Row():
|
78 |
+
with gr.Column():
|
79 |
+
input_image = gr.Image(label="Input Illusion", type="pil")
|
80 |
+
prompt = gr.Textbox(label="Prompt", info="Prompt that guides the generation towards")
|
81 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw")
|
82 |
+
with gr.Accordion(label="Advanced Options", open=False):
|
83 |
+
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=1.1, label="Controlnet Conditioning Scale")
|
84 |
+
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength")
|
85 |
+
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
|
86 |
+
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE")
|
87 |
+
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True)
|
88 |
+
run_btn = gr.Button("Run")
|
89 |
+
with gr.Column():
|
90 |
+
result_image = gr.Image(label="Illusion Diffusion Output")
|
91 |
+
|
92 |
+
run_btn.click(
|
93 |
+
inference,
|
94 |
+
inputs=[input_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, strength, seed, sampler],
|
95 |
+
outputs=[result_image]
|
96 |
+
)
|
97 |
+
|
98 |
+
app.queue(concurrency_count=4, max_size=20)
|
99 |
+
|
100 |
+
if __name__ == "__main__":
|
101 |
+
app.launch(debug=True)
|