import time from langchain.agents import AgentType from langchain.agents import initialize_agent from langchain.callbacks import get_openai_callback from langchain.chat_models import ChatOpenAI from nodes.Worker import * from utils.CustomDocstoreExplorer import CustomDocstoreExplorer from utils.util import * class ReactBase: def __init__(self, fewshot, model_name="text-davinci-002", max_iter=8, verbose=True): self.model_name = model_name self.max_iter = max_iter self.verbose = verbose self.fewshot = fewshot self.tools = self._load_tools() if model_name in OPENAI_COMPLETION_MODELS: self.agent = initialize_agent(self.tools, OpenAI(temperature=0, model_name=self.model_name), agent=AgentType.REACT_DOCSTORE, verbose=self.verbose, return_intermediate_steps=True, max_iterations=max_iter) elif model_name in OPENAI_CHAT_MODELS: self.agent = initialize_agent(self.tools, ChatOpenAI(temperature=0, model_name=self.model_name), agent=AgentType.REACT_DOCSTORE, verbose=self.verbose, return_intermediate_steps=True, max_iterations=max_iter) self.agent.agent.llm_chain.prompt.template = fewshot def run(self, prompt): self.reset() result = {} with get_openai_callback() as cb: st = time.time() response = self.agent(prompt) result["wall_time"] = time.time() - st result["input"] = response["input"] result["output"] = response["output"] result["intermediate_steps"] = response["intermediate_steps"] result["tool_usage"] = self._parse_tool(response["intermediate_steps"]) result["total_tokens"] = cb.total_tokens result["prompt_tokens"] = cb.prompt_tokens result["completion_tokens"] = cb.completion_tokens result["total_cost"] = cb.total_cost result["steps"] = len(response["intermediate_steps"]) + 1 result["token_cost"] = result["total_cost"] result["tool_cost"] = 0 return result def _load_tools(self): docstore = CustomDocstoreExplorer(Wikipedia()) return [ Tool( name="Search", func=docstore.search, description="useful for when you need to ask with search" ), Tool( name="Lookup", func=docstore.lookup, description="useful for when you need to ask with lookup" ) ] def reset(self): self.tools = self._load_tools() if self.model_name in OPENAI_COMPLETION_MODELS: self.agent = initialize_agent(self.tools, OpenAI(temperature=0, model_name=self.model_name), agent=AgentType.REACT_DOCSTORE, verbose=self.verbose, return_intermediate_steps=True, max_iterations=self.max_iter) elif self.model_name in OPENAI_CHAT_MODELS: self.agent = initialize_agent(self.tools, ChatOpenAI(temperature=0, model_name=self.model_name), agent=AgentType.REACT_DOCSTORE, verbose=self.verbose, return_intermediate_steps=True, max_iterations=self.max_iter) self.agent.agent.llm_chain.prompt.template = self.fewshot def _parse_tool(self, intermediate_steps): tool_usage = {"search": 0, "lookup": 0} for step in intermediate_steps: if step[0].tool == "Search": tool_usage["search"] += 1 if step[0].tool == "Lookup": tool_usage["lookup"] += 1 return tool_usage class ReactExtraTool(ReactBase): def __init__(self, model_name="text-davinci-003", available_tools=["Google", "Calculator"], fewshot="\n", verbose=True): self.model_name = model_name self.verbose = verbose self.fewshot = fewshot self.available_tools = available_tools self.tools = self._load_tools() self.agent = initialize_agent(self.tools, OpenAI(temperature=0, model_name=self.model_name), agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=self.verbose, return_intermediate_steps=True) def run(self, prompt): self.reset() result = {} with get_openai_callback() as cb: st = time.time() response = self.agent(prompt) result["wall_time"] = time.time() - st result["input"] = response["input"] result["output"] = response["output"] result["intermediate_steps"] = response["intermediate_steps"] result["tool_usage"] = self._parse_tool(response["intermediate_steps"]) result["total_tokens"] = cb.total_tokens + result["tool_usage"]["llm-math_token"] result["prompt_tokens"] = cb.prompt_tokens result["completion_tokens"] = cb.completion_tokens result["total_cost"] = cb.total_cost + result["tool_usage"]["llm-math_token"] * 0.000002 + \ result["tool_usage"]["serpapi"] * 0.01 # Developer Plan result["steps"] = len(response["intermediate_steps"]) + 1 result["token_cost"] = result["total_cost"] result["tool_cost"] = 0 return result def _load_tools(self): tools = [] for tool_name in self.available_tools: tool_cls = WORKER_REGISTRY[tool_name] tools += [Tool(name=tool_name, func=tool_cls.run, description=tool_cls.description)] return tools def reset(self): self.tools = self._load_tools() self.agent = initialize_agent(self.tools, OpenAI(temperature=0, model_name=self.model_name), agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=self.verbose, return_intermediate_steps=True) self.agent.agent.llm_chain.prompt.template = PREFIX + self._generate_tool_prompt() + "\n" + self.fewshot def _parse_tool(self, intermediate_steps): tool_usage = {"serpapi": 0, "llm-math_token": 0} for step in intermediate_steps: if step[0].tool == "Search": tool_usage["serpapi"] += 1 if step[0].tool == "Calculator": tool_usage["llm-math_token"] += len(step[0].tool_input + step[1]) // 4 # 4 chars per token return tool_usage def _get_worker(self, name): if name in WORKER_REGISTRY: return WORKER_REGISTRY[name] else: raise ValueError("Worker not found") def _generate_tool_prompt(self): prompt = "Tools can be one of the following:\n" for name in self.available_tools: worker = self._get_worker(name) prompt += f"{worker.name}[input]: {worker.description}\n" return prompt + "\n" PREFIX = """Answer the following questions as best you can. You have access to the following tools: """