dvilasuero's picture
dvilasuero HF staff
Update app.py
b6f8835 verified
raw
history blame
8.53 kB
import os
from typing import Dict, Tuple
from uuid import UUID
import altair as alt
import argilla as rg
from argilla.feedback import FeedbackDataset
from argilla.client.feedback.dataset.remote.dataset import RemoteFeedbackDataset
import gradio as gr
import pandas as pd
def obtain_source_target_datasets() -> (
Tuple[
FeedbackDataset | RemoteFeedbackDataset, FeedbackDataset | RemoteFeedbackDataset
]
):
"""
This function returns the source and target datasets to be used in the application.
Returns:
A tuple with the source and target datasets. The source dataset is filtered by the response status 'pending'.
"""
# Obtain the public dataset and see how many pending records are there
source_dataset = rg.FeedbackDataset.from_argilla(
os.getenv("SOURCE_DATASET"), workspace=os.getenv("SOURCE_WORKSPACE")
)
filtered_source_dataset = source_dataset.filter_by(response_status=["pending"])
# Obtain a list of users from the private workspace
target_dataset = rg.FeedbackDataset.from_argilla(
os.getenv("RESULTS_DATASET"), workspace=os.getenv("RESULTS_WORKSPACE")
)
return filtered_source_dataset, target_dataset
def get_user_annotations_dictionary(
dataset: FeedbackDataset | RemoteFeedbackDataset,
) -> Dict[str, int]:
"""
This function returns a dictionary with the username as the key and the number of annotations as the value.
Args:
dataset: The dataset to be analyzed.
Returns:
A dictionary with the username as the key and the number of annotations as the value.
"""
output = {}
for record in dataset:
for response in record.responses:
if str(response.user_id) not in output.keys():
output[str(response.user_id)] = 1
else:
output[str(response.user_id)] += 1
# Changing the name of the keys, from the id to the username
for key in list(output.keys()):
output[rg.User.from_id(UUID(key)).username] = output.pop(key)
return output
def gauge_chart() -> alt.Chart:
# Assuming obtain_source_target_datasets() returns a tuple where the first item is the dataset
source_dataset, _ = obtain_source_target_datasets()
total_records = int(os.getenv("TARGET_RECORDS")) # This should be the total number of records you want to annotate.
annotated_records = len(source_dataset) # This is the number of records already annotated.
pending_records = total_records - annotated_records # Calculate the pending records.
# Prepare data for the gauge chart
gauge_data = pd.DataFrame({
'category': ['Annotated', 'Remaining'],
'value': [annotated_records, pending_records]
})
# The background of the gauge
base = alt.Chart(pd.DataFrame({'value': [total_records], 'category': ['Total']})).mark_bar(
color='#e0e0e0', size=40
).encode(
alt.X('value:Q', scale=alt.Scale(domain=[0, total_records]), title='Record Count'),
alt.Y('category:N', axis=alt.Axis(title=''))
)
# The value part of the gauge
value_bar = alt.Chart(gauge_data).mark_bar(size=40).encode(
alt.X('value:Q'),
alt.Y('category:N', axis=alt.Axis(title='')),
alt.Color('category:N', scale=alt.Scale(domain=['Annotated', 'Remaining'], range=['#28a745', '#dcdcdc']))
)
# Combine the bars to create a gauge effect
chart = alt.layer(base, value_bar).properties(
title='Progress Towards Goal',
width=700,
height=100
)
# Add a text label for the current value
text = alt.Chart(pd.DataFrame({'value': [annotated_records + pending_records/2], 'text': [f'{annotated_records} / {total_records}']})).mark_text(
align='center', baseline='middle', fontSize=16, fontWeight='bold', dy=-30
).encode(
x='value:Q',
text='text:N'
)
return (chart + text)
import altair as alt
import pandas as pd
import os
def donut_chart() -> alt.Chart:
"""
This function returns a donut chart with the number of annotated and pending records.
Returns:
An altair chart with the donut chart.
"""
source_dataset, _ = obtain_source_target_datasets()
annotated_records = len(source_dataset)
pending_records = int(os.getenv("TARGET_RECORDS")) - annotated_records
source = pd.DataFrame(
{
"values": [annotated_records, pending_records],
"category": ["Submitted", "Pending"], # Add a new column for categories
}
)
base = alt.Chart(source).encode(
theta=alt.Theta("values:Q", stack=True),
radius=alt.Radius(
"values", scale=alt.Scale(type="sqrt", zero=True, rangeMin=20)
),
color=alt.Color("category:N", legend=alt.Legend(title="Category")),
)
c1 = base.mark_arc(innerRadius=20, stroke="#fff")
c2 = base.mark_text(radiusOffset=10).encode(text="values:Q")
chart = c1 + c2
return chart
def kpi_chart() -> alt.Chart:
"""
This function returns a KPI chart with the total amount of annotators.
Returns:
An altair chart with the KPI chart.
"""
# Obtain the total amount of annotators
_, target_dataset = obtain_source_target_datasets()
user_ids_annotations = get_user_annotations_dictionary(target_dataset)
total_annotators = len(user_ids_annotations)
# Assuming you have a DataFrame with user data, create a sample DataFrame
data = pd.DataFrame({"Category": ["Total Contributors"], "Value": [total_annotators]})
# Create Altair chart
chart = (
alt.Chart(data)
.mark_text(fontSize=100, align="center", baseline="middle", color="steelblue")
.encode(text="Value:N")
.properties(title="Number of Contributors", width=250, height=200)
)
return chart
def obtain_top_5_users(user_ids_annotations: Dict[str, int]) -> pd.DataFrame:
"""
This function returns the top 5 users with the most annotations.
Args:
user_ids_annotations: A dictionary with the user ids as the key and the number of annotations as the value.
Returns:
A pandas dataframe with the top 5 users with the most annotations.
"""
dataframe = pd.DataFrame(
user_ids_annotations.items(), columns=["Name", "Submitted Responses"]
)
dataframe = dataframe.sort_values(by="Submitted Responses", ascending=False)
return dataframe.head(10)
def main() -> None:
# Connect to the space with rg.init()
rg.init(
api_url=os.getenv("ARGILLA_API_URL"),
api_key=os.getenv("ARGILLA_API_KEY"),
extra_headers={"Authorization": f"Bearer {os.getenv('HF_TOKEN')}"},
)
source_dataset, target_dataset = obtain_source_target_datasets()
user_ids_annotations = get_user_annotations_dictionary(target_dataset)
top5_dataframe = obtain_top_5_users(user_ids_annotations)
with gr.Blocks() as demo:
gr.Markdown(
"""
# πŸ—£οΈ The Prompt Collective Dashboad
This Gradio dashboard shows the progress of the first "Data is Better Together" initiative to understand and collect good quality and diverse prompt for the OSS AI community.
If you want to contribute to OSS AI, join [the Prompt Collective HF Space](https://huggingface.co/spaces/DIBT/prompt-collective).
"""
)
gr.Markdown(
"""
## πŸš€ Contributors Progress
How many records have been submitted, how many are still pending?
"""
)
plot = gr.Plot(label="Plot")
demo.load(
gauge_chart,
inputs=[],
outputs=[plot],
)
gr.Markdown(
"""
## πŸ‘Ύ Contributors Hall of Fame
The number of all contributors and the top 10 contributors:
"""
)
with gr.Row():
plot2 = gr.Plot(label="Plot")
demo.load(
kpi_chart,
inputs=[],
outputs=[plot2],
)
gr.Dataframe(
value=top5_dataframe,
headers=["Name", "Submitted Responses"],
datatype=[
"str",
"number",
],
row_count=10,
col_count=(2, "fixed"),
interactive=False,
),
# Launch the Gradio interface
demo.launch()
if __name__ == "__main__":
main()