open-notebooklm / utils.py
gabrielchua's picture
add jina, language support
dc06293
raw
history blame
2.71 kB
"""
utils.py
Functions:
- get_script: Get the dialogue from the LLM.
- call_llm: Call the LLM with the given prompt and dialogue format.
- get_audio: Get the audio from the TTS model from HF Spaces.
"""
import os
import requests
from gradio_client import Client
from openai import OpenAI
from pydantic import ValidationError
MODEL_ID = "accounts/fireworks/models/llama-v3p1-405b-instruct"
JINA_URL = "https://r.jina.ai/"
client = OpenAI(
base_url="https://api.fireworks.ai/inference/v1",
api_key=os.getenv("FIREWORKS_API_KEY"),
)
hf_client = Client("mrfakename/MeloTTS")
def generate_script(system_prompt: str, input_text: str, output_model):
"""Get the dialogue from the LLM."""
# Load as python object
try:
response = call_llm(system_prompt, input_text, output_model)
dialogue = output_model.model_validate_json(
response.choices[0].message.content
)
except ValidationError as e:
error_message = f"Failed to parse dialogue JSON: {e}"
system_prompt_with_error = f"{system_prompt}\n\nPlease return a VALID JSON object. This was the earlier error: {error_message}"
response = call_llm(system_prompt_with_error, input_text, output_model)
dialogue = output_model.model_validate_json(
response.choices[0].message.content
)
return dialogue
def call_llm(system_prompt: str, text: str, dialogue_format):
"""Call the LLM with the given prompt and dialogue format."""
response = client.chat.completions.create(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": text},
],
model=MODEL_ID,
max_tokens=16_384,
temperature=0.1,
response_format={
"type": "json_object",
"schema": dialogue_format.model_json_schema(),
},
)
return response
def parse_url(url: str) -> str:
"""Parse the given URL and return the text content."""
full_url = f"{JINA_URL}{url}"
response = requests.get(full_url, timeout=60)
return response.text
def generate_audio(text: str, speaker: str, language: str) -> bytes:
"""Get the audio from the TTS model from HF Spaces and adjust pitch if necessary."""
if speaker == "Guest":
accent = "EN-US" if language == "EN" else language
speed = 0.9
else: # host
accent = "EN-Default" if language == "EN" else language
speed = 1
if language != "EN" and speaker != "Guest":
speed = 1.1
# Generate audio
result = hf_client.predict(
text=text, language=language, speaker=accent, speed=speed, api_name="/synthesize"
)
return result