Spaces:
Running
Running
File size: 22,870 Bytes
91af6e1 e15d9f7 f64f517 91af6e1 2960f93 91af6e1 e15d9f7 91af6e1 36bafb0 28482bd 3ae161b a9ddfd3 3ae161b 91af6e1 e15d9f7 91af6e1 28482bd e15d9f7 3ae161b e15d9f7 91af6e1 28482bd 3ae161b 28482bd 95d1f8b 3ae161b 28482bd 3ae161b 28482bd 3ae161b 28482bd 3647674 28482bd 3647674 91af6e1 c1a388c 28482bd 3647674 3ae161b 3647674 3ae161b 91af6e1 28482bd e15d9f7 91af6e1 28482bd 91af6e1 28482bd 91af6e1 e15d9f7 91af6e1 e15d9f7 91af6e1 e15d9f7 91af6e1 e15d9f7 91af6e1 e15d9f7 91af6e1 e15d9f7 91af6e1 e15d9f7 91af6e1 e15d9f7 91af6e1 28482bd 91af6e1 e15d9f7 36bafb0 28482bd e15d9f7 36bafb0 b741ac4 36bafb0 28482bd e15d9f7 36bafb0 b741ac4 36bafb0 2960f93 36bafb0 2960f93 36bafb0 2960f93 36bafb0 91af6e1 36bafb0 91af6e1 36bafb0 91af6e1 36bafb0 e15d9f7 fa9ab88 e15d9f7 fa9ab88 36bafb0 e15d9f7 36bafb0 e15d9f7 1b1cfc3 b741ac4 1b1cfc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 |
from openai import AzureOpenAI
from langchain_openai import AzureChatOpenAI
from huggingface_hub import InferenceClient
import os
import ffmpeg
from typing import List
from moviepy.editor import VideoFileClip
import nltk
from gtts import gTTS
from sklearn.feature_extraction.text import TfidfVectorizer
from langchain import HuggingFaceHub, PromptTemplate, LLMChain
import gradio as gr
from pytube import YouTube
import requests
import logging
import os
from pydub import AudioSegment
import speech_recognition as sr
import torchaudio
from pydub.silence import split_on_silence
from speechbrain.inference.classifiers import EncoderClassifier
nltk.download('punkt')
nltk.download('stopwords')
class VideoAnalytics:
"""
Class for performing analytics on videos including transcription, summarization, topic generation,
and extraction of important sentences.
"""
def __init__(self):
"""
Initialize the VideoAnalytics object.
Args:
hf_token (str): Hugging Face API token.
"""
# Initialize AzureOpenAI client
self.client = AzureOpenAI()
self.mistral_client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# Initialize transcribed text variable
self.transcribed_text = ""
self.r = sr.Recognizer()
self.language_id = EncoderClassifier.from_hparams(source="speechbrain/lang-id-voxlingua107-ecapa", savedir="tmp")
# Initialize english text variable
self.english_text = ""
self.openai_llm = AzureChatOpenAI(
deployment_name="ChatGPT",
)
# Configure logging settings
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
def mp3_to_wav(self, mp3_file: str, wav_file: str) -> str:
"""
Convert an MP3 audio file to WAV format.
Args:
mp3_file (str): The path to the input MP3 file.
wav_file (str): The path to save the output WAV file.
Returns:
str: The filename of the converted WAV file.
Raises:
Exception: If there's an error during the conversion process.
"""
try:
# Load the MP3 file
audio = AudioSegment.from_mp3(mp3_file)
# Export the audio to WAV format
audio.export(wav_file, format="wav")
logging.info(f"MP3 file '{mp3_file}' converted to WAV successfully: {wav_file}")
return wav_file
except Exception as e:
# Log the exception and raise it further
logging.error(f"Error occurred while converting MP3 to WAV: {e}")
raise e
# Function to recognize speech in the audio file
def transcribe_audio(self,path: str,lang: str):
"""Transcribe speech from an audio file."""
try:
with sr.AudioFile(path) as source:
audio_listened = self.r.record(source)
text = self.r.recognize_google(audio_listened,language=lang)
return text
except sr.UnknownValueError as e:
logging.error(f"Speech recognition could not understand audio: {e}")
return ""
except sr.RequestError as e:
logging.error(f"Could not request results from Google Speech Recognition service: {e}")
return ""
# Function to split the audio file into chunks on silence and apply speech recognition
def get_large_audio_transcription_on_silence(self,path: str,lang: str):
"""Split the large audio file into chunks and apply speech recognition on each chunk."""
try:
sound = AudioSegment.from_file(path)
chunks = split_on_silence(sound, min_silence_len=500, silence_thresh=sound.dBFS-14, keep_silence=500)
folder_name = "audio-chunks"
if not os.path.isdir(folder_name):
os.mkdir(folder_name)
whole_text = ""
for i, audio_chunk in enumerate(chunks, start=1):
chunk_filename = os.path.join(folder_name, f"chunk{i}.wav")
audio_chunk.export(chunk_filename, format="wav")
text = self.transcribe_audio(chunk_filename,lang)
if text:
text = f"{text.capitalize()}. "
logging.info(f"Transcribed {chunk_filename}: {text}")
whole_text += text
else:
logging.warning(f"No speech recognized in {chunk_filename}")
return whole_text
except Exception as e:
logging.error(f"Error processing audio: {e}")
return ""
def split_audio(self,input_file):
# Load the audio file
audio = AudioSegment.from_file(input_file)
# Define segment length in milliseconds (5 minutes = 300,000 milliseconds)
segment_length = 60000
# Split the audio into segments
segments = []
for i, start_time in enumerate(range(0, len(audio), segment_length)):
# Calculate end time for current segment
end_time = start_time + segment_length if start_time + segment_length < len(audio) else len(audio)
# Extract segment
segment = audio[start_time:end_time]
# Append segment to list
segments.append(segment)
return segments
def transcribe_video(self, vid: str) -> str:
"""
Transcribe the audio of the video.
Args:
vid (str): Path to the video file.
Returns:
str: Transcribed text.
"""
try:
# Load the video file and extract audio
video = VideoFileClip(vid)
audio = video.audio
# Write audio to a temporary file
audio.write_audiofile("output_audio.mp3")
# Replace 'input.mp3' and 'output.wav' with your file paths
audio_filename = self.mp3_to_wav("output_audio.mp3", 'output.wav')
segments = self.split_audio(audio_filename)
splitted_audio_filename = segments[0].export("segment_for_1_min.wav",format="wav")
# for detect lang
signal = self.language_id.load_audio(splitted_audio_filename.name)
prediction = self.language_id.classify_batch(signal)
lang = [prediction[3][0].split(":")][0][0]
text = self.get_large_audio_transcription_on_silence(audio_filename,lang)
# Update the transcribed_text attribute with the transcription result
self.transcribed_text = text
# Update the translation text into english_text
self.english_text = self.translation()
# Return the transcribed text
return text
except Exception as e:
logging.error(f"Error transcribing video: {e}")
return ""
def generate_video_summary(self) -> str:
"""
Generate a summary of the transcribed video.
Returns:
str: Generated summary.
"""
try:
# Define a conversation between system and user
conversation = [
{"role": "system", "content": "You are a Summarizer"},
{"role": "user", "content": f"""summarize the following text delimited by triple backticks.Output must in english.
In two format of Outputs given below:
Abstractive Summary:
Extractive Summary:
```{self.english_text}```
"""}
]
# Generate completion using ChatGPT model
response = self.client.chat.completions.create(
model="ChatGPT",
messages=conversation,
temperature=0,
max_tokens=1000
)
# Get the generated summary message
message = response.choices[0].message.content
return message
except Exception as e:
logging.error(f"Error generating video summary: {e}")
return ""
def generate_topics(self) -> str:
"""
Generate topics from the transcribed video.
Returns:
str: Generated topics.
"""
try:
# Define a conversation between system and user
conversation = [
{"role": "system", "content": "You are a Topic Generator"},
{"role": "user", "content": f"""generate single Topics from the following text don't make sentence for topic generation,delimited by triple backticks.Output must in english.
list out the topics:
Topics:
```{self.english_text}```
"""}
]
# Generate completion using ChatGPT model
response = self.client.chat.completions.create(
model="ChatGPT",
messages=conversation,
temperature=0,
max_tokens=1000
)
# Get the generated topics message
message = response.choices[0].message.content
return message
except Exception as e:
logging.error(f"Error generating topics: {e}")
return ""
def translation(self) -> str:
"""
translation from the transcribed video.
Returns:
str: translation.
"""
try:
# Define a conversation between system and user
conversation = [
{"role": "system", "content": "You are a Multilingual Translator"},
{"role": "user", "content": f""" Translate the following text in English ,delimited by triple backticks.
```{self.transcribed_text}```
"""}
]
# Generate completion using ChatGPT model
response = self.client.chat.completions.create(
model="ChatGPT",
messages=conversation,
temperature=0,
max_tokens=1000
)
# Get the generated topics message
message = response.choices[0].message.content
return message
except Exception as e:
logging.error(f"Error generating topics: {e}")
return ""
def format_prompt(self, question: str, data: str) -> str:
"""
Formats the prompt for the language model.
Args:
question (str): The user's question.
data (str): The data to be analyzed.
Returns:
str: Formatted prompt.
"""
prompt = "<s>"
prompt = f"""[INST] you are the german language and universal language expert .your task is analyze the given data and user ask any question about given data answer to the user question.your returning answer must in user's language.otherwise reply i don't know.
data:{data}
question:{question}[/INST]"""
prompt1 = f"[INST] {question} [/INST]"
return prompt+prompt1
def generate(self, prompt: str, transcribed_text: str, temperature=0.9, max_new_tokens=5000, top_p=0.95,
repetition_penalty=1.0) -> str:
"""
Generates text based on the prompt and transcribed text.
Args:
prompt (str): The prompt for generating text.
transcribed_text (str): The transcribed text for analysis.
temperature (float): Controls the randomness of the sampling. Default is 0.9.
max_new_tokens (int): Maximum number of tokens to generate. Default is 5000.
top_p (float): Nucleus sampling parameter. Default is 0.95.
repetition_penalty (float): Penalty for repeating the same token. Default is 1.0.
Returns:
str: Generated text.
"""
try:
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
# Format the prompt
formatted_prompt = self.format_prompt(prompt,transcribed_text)
# Generate text using the mistral client
stream = self.mistral_client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
# Concatenate generated text
for response in stream:
output += response.token.text
return output.replace("</s>","")
except Exception as e:
logging.error(f"Error in text generation: {e}")
return "An error occurred during text generation."
def video_qa(self, question: str, model: str) -> str:
"""
Performs video question answering.
Args:
question (str): The question asked by the user.
model (str): The language model to be used ("OpenAI" or "Mixtral").
Returns:
str: Answer to the user's question.
"""
try:
if model == "OpenAI":
template = """you are the universal language expert .your task is analyze the given text and user ask any question about given text answer to the user question.otherwise reply i don't know.
extracted_text:{text}
user_question:{question}"""
prompt = PromptTemplate(template=template, input_variables=["text","question"])
llm_chain = LLMChain(prompt=prompt, verbose=True, llm=self.openai_llm)
# Run the language model chain
result = llm_chain.run({"text":self.english_text,"question":question})
return result
elif model == "Mixtral":
# Generate answer using Mixtral model
result = self.generate(question,self.english_text)
return result
except Exception as e:
logging.error(f"Error in video question answering: {e}")
return "An error occurred during video question answering."
def extract_video_important_sentence(self) -> str:
"""
Extract important sentences from the transcribed video.
Returns:
str: Extracted important sentences.
"""
try:
# Tokenize the sentences
sentences = nltk.sent_tokenize(self.english_text)
# Initialize TF-IDF vectorizer
tfidf_vectorizer = TfidfVectorizer()
# Fit the vectorizer on the summary sentences
tfidf_matrix = tfidf_vectorizer.fit_transform(sentences)
# Calculate sentence scores based on TF-IDF values
sentence_scores = tfidf_matrix.sum(axis=1)
# Create a list of (score, sentence) tuples
sentence_rankings = [(score, sentence) for score, sentence in zip(sentence_scores, sentences)]
# Sort sentences by score in descending order
sentence_rankings.sort(reverse=True)
# Set a threshold for selecting sentences
threshold = 2.5 # Adjust as needed
# Select sentences with scores above the threshold
selected_sentences = [sentence for score, sentence in sentence_rankings if score >= threshold]
# Join selected sentences to form the summary
summary = '\n\n'.join(selected_sentences)
return summary
except Exception as e:
logging.error(f"Error extracting important sentences: {e}")
return ""
def write_text_files(self, text: str, filename: str) -> None:
"""
Write text to a file.
Args:
text (str): Text to be written to the file.
filename (str): Name of the file.
"""
try:
file_path = f"{filename}.txt"
with open(file_path, 'w') as file:
# Write content to the file
file.write(text)
except Exception as e:
logging.error(f"Error writing text to file: {e}")
def Download(self, link: str) -> str:
"""
Download a video from YouTube.
Args:
link (str): YouTube video link.
Returns:
str: Path to the downloaded video file.
"""
try:
# Initialize YouTube object with the provided link
youtubeObject = YouTube(link)
# Get the highest resolution stream
youtubeObject = youtubeObject.streams.get_highest_resolution()
try:
# Attempt to download the video
file_name = youtubeObject.download()
return file_name
except:
# Log any errors that occur during video download
logging.info("An error has occurred")
logging.info("Download is completed successfully")
except Exception as e:
# Log any errors that occur during initialization of YouTube object
logging.error(f"Error downloading video: {e}")
return ""
def save_audio_with_gtts(self, text: str, filename: str) -> str:
"""
Generate an audio file from the given text using gTTS and save it.
Args:
text (str): The text to be converted into speech.
filename (str): The filename (including path) to save the audio file.
Returns:
str: The filename of the saved audio file.
Raises:
Exception: If there's an error during the conversion or saving process.
"""
try:
tts = gTTS(text=text, lang='en')
tts.save(filename)
logging.info(f"Audio file saved successfully: {filename}")
return filename
except Exception as e:
# Log the exception and raise it further
logging.error(f"Error occurred while saving audio: {e}")
raise e
def main(self, video: str = None, input_path: str = None) -> tuple:
"""
Perform video analytics.
Args:
video (str): Path to the video file.
input_path (str): Input path for the video.
Returns:
tuple: Summary, important sentences, and topics.
"""
try:
# Download the video if input_path is provided, otherwise use the provided video path
if input_path:
input_path = self.Download(input_path)
video_ = VideoFileClip(input_path)
duration = video_.duration
video_.close()
if round(duration) <= 6*600:
text = self.transcribe_video(input_path)
else:
return "Video Duration Above 10 Minutes,Try Below 10 Minutes Video","","",None,None,None
elif video:
video_ = VideoFileClip(video)
duration = video_.duration
video_.close()
if round(duration) <= 6*600:
text = self.transcribe_video(video)
input_path = video
else:
return "Video Duration Above 10 Minutes,Try Below 10 Minutes Video","","",None,None,None
# Generate summary, important sentences, and topics
summary = self.generate_video_summary()
self.write_text_files(summary,"Summary")
summary_voice = self.save_audio_with_gtts(summary,"summary.mp3")
important_sentences = self.extract_video_important_sentence()
self.write_text_files(important_sentences,"Important_Sentence")
important_sentences_voice = self.save_audio_with_gtts(important_sentences,"important_sentences.mp3")
topics = self.generate_topics()
self.write_text_files(topics,"Topics")
topics_voice = self.save_audio_with_gtts(topics,"topics.mp3")
# Return the generated summary, important sentences, and topics
return summary,important_sentences,topics,summary_voice,important_sentences_voice,topics_voice
except Exception as e:
# Log any errors that occur during video analytics
logging.error(f"Error in main function: {e}")
return "", "", ""
def gradio_interface(self):
with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as demo:
gr.HTML("""<center><h1>Video Analytics</h1></center>""")
with gr.Row():
yt_link = gr.Textbox(label= "Youtube Link",placeholder="https://www.youtube.com/watch?v=")
with gr.Row():
video = gr.Video(sources="upload",height=200,width=300)
with gr.Row():
submit_btn = gr.Button(value="Submit")
with gr.Tab("Summary"):
with gr.Row():
summary = gr.Textbox(show_label=False,lines=10)
with gr.Row():
summary_download = gr.DownloadButton(label="Download",value="Summary.txt",visible=True,size='lg',elem_classes="download_button")
with gr.Row():
summary_audio = gr.Audio(show_label= False,elem_classes='audio_class')
with gr.Tab("Important Sentences"):
with gr.Row():
Important_Sentences = gr.Textbox(show_label=False,lines=10)
with gr.Row():
sentence_download = gr.DownloadButton(label="Download",value="Important_Sentence.txt",visible=True,size='lg',elem_classes="download_button")
with gr.Row():
important_sentence_audio = gr.Audio(show_label = False,elem_classes='audio_class')
with gr.Tab("Topics"):
with gr.Row():
Topics = gr.Textbox(show_label=False,lines=10)
with gr.Row():
topics_download = gr.DownloadButton(label="Download",value="Topics.txt",visible=True,size='lg',elem_classes="download_button")
with gr.Row():
topics_audio = gr.Audio(show_label=False,elem_classes='audio_class')
with gr.Tab("Video QA"):
with gr.Row():
with gr.Column(scale=0.70):
question = gr.Textbox(show_label=False,placeholder="Ask Your Questions...")
with gr.Column(scale=0.30):
model = gr.Dropdown(["OpenAI", "Mixtral"],show_label=False,value="model")
with gr.Row():
result = gr.Textbox(label='Answer',lines=10)
submit_btn.click(self.main,[video,yt_link],[summary,Important_Sentences,Topics,summary_audio,important_sentence_audio,topics_audio])
question.submit(self.video_qa,[question,model],result)
demo.launch()
if __name__ == "__main__":
video_analytics = VideoAnalytics()
video_analytics.gradio_interface() |