Baskar2005
commited on
Commit
•
476e588
1
Parent(s):
292e0f4
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import tensorflow as tf
|
2 |
-
import random
|
3 |
from PIL import Image
|
4 |
from tensorflow import keras
|
5 |
import numpy as np
|
6 |
import os
|
|
|
7 |
import logging
|
8 |
from tensorflow.keras.preprocessing import image as keras_image
|
9 |
from huggingface_hub import from_pretrained_keras
|
@@ -15,16 +15,12 @@ logging.basicConfig(level=logging.INFO)
|
|
15 |
|
16 |
class DiseaseDetectionApp:
|
17 |
def __init__(self):
|
18 |
-
|
19 |
-
self.class_names = [
|
20 |
-
"Normal",
|
21 |
-
"PNEUMONIA",
|
22 |
-
]
|
23 |
-
|
24 |
-
keras.utils.set_random_seed(42)
|
25 |
-
self.model = from_pretrained_keras("ryefoxlime/PneumoniaDetection")
|
26 |
-
self.client=AzureOpenAI()
|
27 |
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def predict_disease(self, image_path):
|
30 |
"""
|
@@ -37,36 +33,36 @@ class DiseaseDetectionApp:
|
|
37 |
- predicted_disease: string
|
38 |
"""
|
39 |
try:
|
40 |
-
# Load the image file, resizing it to the dimensions expected by the model
|
41 |
-
img = keras_image.load_img(image_path, target_size=(224, 224)) # Adjust target_size according to your model's expected input dimensions
|
42 |
-
|
43 |
-
# Convert the image to a numpy array
|
44 |
-
img_array = keras_image.img_to_array(img)
|
45 |
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
|
50 |
-
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
|
|
|
|
|
|
|
57 |
|
58 |
except Exception as e:
|
59 |
logging.error(f"Error predicting disease: {str(e)}")
|
60 |
return None
|
61 |
|
62 |
def classify_disease(self,image_path):
|
63 |
-
|
64 |
disease_name=self.predict_disease(image_path)
|
65 |
print(disease_name)
|
66 |
-
if disease_name=="
|
67 |
conversation = [
|
68 |
{"role": "system", "content": "You are a medical assistant"},
|
69 |
-
{"role": "user", "content": f""" your task describe(classify) about the given disease as summary only in
|
70 |
```{disease_name}```
|
71 |
"""}
|
72 |
]
|
@@ -74,23 +70,20 @@ class DiseaseDetectionApp:
|
|
74 |
response = self.client.chat.completions.create(
|
75 |
model="ChatGPT",
|
76 |
messages=conversation,
|
77 |
-
temperature=0,
|
78 |
max_tokens=1000
|
79 |
)
|
80 |
# Get the generated topics message
|
81 |
-
|
82 |
result = response.choices[0].message.content
|
83 |
return disease_name,result
|
84 |
|
85 |
elif disease_name=="Normal":
|
86 |
result="No problem in your xray image"
|
87 |
return disease_name,result
|
88 |
-
|
89 |
-
else:
|
90 |
-
logging.error("Error classify_disease disease")
|
91 |
-
return "Something went wrong"
|
92 |
|
93 |
-
|
|
|
94 |
"""
|
95 |
Unzips an image dataset into a specified directory.
|
96 |
|
@@ -98,8 +91,8 @@ class DiseaseDetectionApp:
|
|
98 |
str: The path to the directory containing the extracted image files.
|
99 |
"""
|
100 |
try:
|
101 |
-
with ZipFile(
|
102 |
-
directory_path=
|
103 |
extract.extractall(f"{directory_path}")
|
104 |
return f"{directory_path}"
|
105 |
|
@@ -107,14 +100,14 @@ class DiseaseDetectionApp:
|
|
107 |
logging.error(f"An error occurred during extraction: {e}")
|
108 |
return ""
|
109 |
|
110 |
-
def example_images(self):
|
111 |
"""
|
112 |
Unzips the image dataset and generates a list of paths to the individual image files and use image for showing example
|
113 |
|
114 |
Returns:
|
115 |
List[str]: A list of file paths to each image in the dataset.
|
116 |
"""
|
117 |
-
image_dataset_folder = self.unzip_image_data()
|
118 |
image_extensions = ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp']
|
119 |
image_count = len([name for name in os.listdir(image_dataset_folder) if os.path.isfile(os.path.join(image_dataset_folder, name)) and os.path.splitext(name)[1].lower() in image_extensions])
|
120 |
example=[]
|
@@ -122,16 +115,25 @@ class DiseaseDetectionApp:
|
|
122 |
for name in os.listdir(image_dataset_folder):
|
123 |
path=(os.path.join(os.path.dirname(image_dataset_folder),os.path.join(image_dataset_folder,name)))
|
124 |
example.append(path)
|
125 |
-
|
126 |
return example
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
def gradio_interface(self):
|
130 |
|
131 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
132 |
gr.HTML("""<center><h1>Pneumonia Disease Detection</h1></center>""")
|
133 |
|
134 |
-
|
|
|
135 |
with gr.Row():
|
136 |
input_image =gr.Image(type="filepath",sources="upload")
|
137 |
with gr.Column():
|
@@ -142,14 +144,26 @@ class DiseaseDetectionApp:
|
|
142 |
button =gr.Button(value="Detect The Disease")
|
143 |
|
144 |
button.click(self.classify_disease,[input_image],[output,classify_disease_])
|
|
|
145 |
gr.Examples(
|
146 |
-
examples=
|
|
|
147 |
inputs=[input_image],
|
148 |
outputs=[output,classify_disease_],
|
149 |
fn=self.classify_disease,
|
|
|
150 |
cache_examples=False)
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
demo.launch(debug=True)
|
154 |
|
155 |
if __name__ == "__main__":
|
|
|
1 |
import tensorflow as tf
|
|
|
2 |
from PIL import Image
|
3 |
from tensorflow import keras
|
4 |
import numpy as np
|
5 |
import os
|
6 |
+
import random
|
7 |
import logging
|
8 |
from tensorflow.keras.preprocessing import image as keras_image
|
9 |
from huggingface_hub import from_pretrained_keras
|
|
|
15 |
|
16 |
class DiseaseDetectionApp:
|
17 |
def __init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
|
20 |
+
self.class_names =['Normal', 'Pneumonia']
|
21 |
+
self.model =tf.keras.models.load_model("pneumonia_xray_prediction.keras")
|
22 |
+
self.client=AzureOpenAI()
|
23 |
+
|
24 |
|
25 |
def predict_disease(self, image_path):
|
26 |
"""
|
|
|
33 |
- predicted_disease: string
|
34 |
"""
|
35 |
try:
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
# Load the image file, resizing it to the dimensions expected by the model
|
38 |
+
img = keras_image.load_img(image_path, target_size=(256, 256)) # Adjust target_size according to your model's expected input dimensions
|
39 |
|
40 |
+
# Convert the image to a numpy array
|
41 |
+
img_array = keras_image.img_to_array(img)
|
42 |
|
43 |
+
# Add an additional dimension to the array: (1, height, width, channels)
|
44 |
+
img_array = tf.expand_dims(img_array, 0) # Model expects a batch of images, but we're only passing a single image
|
45 |
+
# print(img_array)
|
46 |
+
# Make predictions
|
47 |
+
predictions = self.model.predict(img_array)
|
48 |
|
49 |
+
# Extract the predicted class and confidence
|
50 |
+
predict_class =self.class_names[np.argmax(predictions[0])]
|
51 |
+
confidence = round(100 * np.max(predictions[0]), 2)
|
52 |
+
return predict_class
|
53 |
|
54 |
except Exception as e:
|
55 |
logging.error(f"Error predicting disease: {str(e)}")
|
56 |
return None
|
57 |
|
58 |
def classify_disease(self,image_path):
|
59 |
+
|
60 |
disease_name=self.predict_disease(image_path)
|
61 |
print(disease_name)
|
62 |
+
if disease_name=="Pneumonia":
|
63 |
conversation = [
|
64 |
{"role": "system", "content": "You are a medical assistant"},
|
65 |
+
{"role": "user", "content": f""" your task describe(classify) about the given disease as a summary only in 5 lines.
|
66 |
```{disease_name}```
|
67 |
"""}
|
68 |
]
|
|
|
70 |
response = self.client.chat.completions.create(
|
71 |
model="ChatGPT",
|
72 |
messages=conversation,
|
73 |
+
temperature=0.4,
|
74 |
max_tokens=1000
|
75 |
)
|
76 |
# Get the generated topics message
|
77 |
+
|
78 |
result = response.choices[0].message.content
|
79 |
return disease_name,result
|
80 |
|
81 |
elif disease_name=="Normal":
|
82 |
result="No problem in your xray image"
|
83 |
return disease_name,result
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
|
86 |
+
def unzip_image_data(self,filespath):
|
87 |
"""
|
88 |
Unzips an image dataset into a specified directory.
|
89 |
|
|
|
91 |
str: The path to the directory containing the extracted image files.
|
92 |
"""
|
93 |
try:
|
94 |
+
with ZipFile(filespath,"r") as extract:
|
95 |
+
directory_path = random.randrange(100)
|
96 |
extract.extractall(f"{directory_path}")
|
97 |
return f"{directory_path}"
|
98 |
|
|
|
100 |
logging.error(f"An error occurred during extraction: {e}")
|
101 |
return ""
|
102 |
|
103 |
+
def example_images(self,filespath):
|
104 |
"""
|
105 |
Unzips the image dataset and generates a list of paths to the individual image files and use image for showing example
|
106 |
|
107 |
Returns:
|
108 |
List[str]: A list of file paths to each image in the dataset.
|
109 |
"""
|
110 |
+
image_dataset_folder = self.unzip_image_data(filespath)
|
111 |
image_extensions = ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp']
|
112 |
image_count = len([name for name in os.listdir(image_dataset_folder) if os.path.isfile(os.path.join(image_dataset_folder, name)) and os.path.splitext(name)[1].lower() in image_extensions])
|
113 |
example=[]
|
|
|
115 |
for name in os.listdir(image_dataset_folder):
|
116 |
path=(os.path.join(os.path.dirname(image_dataset_folder),os.path.join(image_dataset_folder,name)))
|
117 |
example.append(path)
|
118 |
+
|
119 |
return example
|
120 |
+
|
121 |
+
def get_example_image(self):
|
122 |
+
normal_image="Normal_dataset.zip"
|
123 |
+
tuberclosis_image="Pnemonia_dataset.zip"
|
124 |
+
|
125 |
+
normal_image_unziped=self.example_images(normal_image)
|
126 |
+
tuberclosis_image_unziped=self.example_images(tuberclosis_image)
|
127 |
+
|
128 |
+
return normal_image_unziped,tuberclosis_image_unziped
|
129 |
|
130 |
def gradio_interface(self):
|
131 |
|
132 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
133 |
gr.HTML("""<center><h1>Pneumonia Disease Detection</h1></center>""")
|
134 |
|
135 |
+
normal_image,tuberclosis_image=self.get_example_image()
|
136 |
+
|
137 |
with gr.Row():
|
138 |
input_image =gr.Image(type="filepath",sources="upload")
|
139 |
with gr.Column():
|
|
|
144 |
button =gr.Button(value="Detect The Disease")
|
145 |
|
146 |
button.click(self.classify_disease,[input_image],[output,classify_disease_])
|
147 |
+
|
148 |
gr.Examples(
|
149 |
+
examples=normal_image,
|
150 |
+
label="Normal X-ray Images",
|
151 |
inputs=[input_image],
|
152 |
outputs=[output,classify_disease_],
|
153 |
fn=self.classify_disease,
|
154 |
+
examples_per_page=5,
|
155 |
cache_examples=False)
|
156 |
+
|
157 |
+
gr.Examples(
|
158 |
+
examples=tuberclosis_image,
|
159 |
+
label="Pneumonia X-ray Images",
|
160 |
+
inputs=[input_image],
|
161 |
+
outputs=[output,classify_disease_],
|
162 |
+
examples_per_page=5,
|
163 |
+
fn=self.classify_disease,
|
164 |
+
cache_examples=False)
|
165 |
+
|
166 |
+
|
167 |
demo.launch(debug=True)
|
168 |
|
169 |
if __name__ == "__main__":
|