File size: 1,580 Bytes
9d7c354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ef2339
6eac829
6f9b836
9d7c354
f1e8315
9d7c354
 
 
 
 
 
 
0fa9629
 
9d7c354
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import os
import gradio as gr
from PIL import Image
import torch

os.system(
    'wget https://github.com/FanChiMao/CMFNet/releases/download/v0.0/deblur_GoPro_CMFNet.pth -P experiments/pretrained_models')


def inference(img):
    os.system('mkdir test')
    basewidth = 512
    wpercent = (basewidth / float(img.size[0]))
    hsize = int((float(img.size[1]) * float(wpercent)))
    img = img.resize((basewidth, hsize), Image.BILINEAR)
    img.save("test/1.png", "PNG")
    os.system(
        'python main_test_CMFNet.py --input_dir test --weights experiments/pretrained_models/deblur_GoPro_CMFNet.pth')
    return 'results/1.png'


title = "Compound Multi-branch Feature Fusion for Image Restoration (Deblur)"
description = "Gradio demo for CMFNet. CMFNet achieves competitive performance on three tasks: image deblurring, image dehazing and image deraindrop. Here, we provide a demo for image deblur. To use it, simply upload your image, or click one of the examples to load them. Reference from: https://huggingface.co/akhaliq"
article = "<p style='text-align: center'><a href='https://' target='_blank'>Compound Multi-branch Feature Fusion for Real Image Restoration</a> | <a href='https://github.com/FanChiMao/CMFNet' target='_blank'>Github Repo</a></p>"

examples = [['Blur.png']]
gr.Interface(
    inference,
    [gr.inputs.Image(type="pil", label="Input")],
    gr.outputs.Image(type="file", label="Output"),
    title=title,
    description=description,
    article=article,
    allow_flagging=False,
    allow_screenshot=False,
    examples=examples
).launch(debug=True)