Spaces:
Runtime error
Runtime error
import pandas as pd | |
import numpy as np | |
from IPython.display import display | |
from sklearn import preprocessing | |
from sklearn.neighbors import KNeighborsRegressor | |
from sklearn.neural_network import MLPRegressor | |
from sklearn.preprocessing import OneHotEncoder | |
from pickle import dump, load | |
import gradio as gr | |
# load the model | |
mlp_model = load(open('mlp_classifier.pkl', 'rb')) | |
# load the scaler | |
my_scaler = load(open('scaler.pkl', 'rb')) | |
hot_enc_scaler = load(open('hot_enc.pkl', 'rb')) | |
description = ''' | |
This small prototype is using Big Data and AI to provide an accurate estimate of FootBall player net worth in euros based on bio info and skill level. | |
''' | |
def predict_value(age,height_cm,weight_kg,overall_skill,potential_skill,nationality,club): | |
#pre-processing: | |
numerical_features = [[age,height_cm,weight_kg,overall_skill,potential_skill]] | |
catagorical_features = [[nationality,club]] | |
numerical_features = my_scaler.transform(numerical_features) | |
catagorical_features = hot_enc_scaler.transform(catagorical_features).toarray() | |
sample_player = np.concatenate((numerical_features[0], catagorical_features[0]), axis=0) | |
#predict: | |
predicted_value = mlp_model.predict(sample_player.reshape(1, -1)) | |
return predicted_value | |
demo = gr.Interface( | |
fn=predict_value, | |
inputs=[gr.Slider(15, 60),gr.Slider(100, 200),gr.Slider(0, 100),gr.Slider(0, 100),gr.Slider(0, 100), | |
gr.inputs.Dropdown(["Argentina" , "Saudi Arabia", "England"]), | |
gr.inputs.Dropdown(["FC Barcelona" , "Juventus", "Liverpool", "Al Hilal", "Al Nassr"])], | |
outputs=[gr.Number(label='Net Worth (Euros)')], | |
title= "TalentAI - Estimate FB Player Value (Eur)", | |
description = description, | |
article = "Abdulaziz Alakooz developed this prototype as part of Thkaa AI in sports contest - August 2022.") | |
demo.launch() |