first commit
Browse files- RXBASE-600_00071-1014-68_NLMIMAGE10_5715ABFD.jpg +0 -0
- RXBASE-600_00074-7126-13_NLMIMAGE10_C003606B.jpg +0 -0
- RXNAV-600_13668-0095-90_RXNAVIMAGE10_D145E8EF.jpg +0 -0
- app.py +193 -0
- drug_yolov10.pt +3 -0
- gradio_cached_examples/23/Annotated Image/ba594e145eaf95ab5434/image.webp +0 -0
- gradio_cached_examples/23/indices.csv +1 -0
- gradio_cached_examples/23/log.csv +2 -0
- gradio_cached_examples/24/Annotated Image/218b53a36785220fa9c1/image.webp +0 -0
- gradio_cached_examples/24/indices.csv +1 -0
- gradio_cached_examples/24/log.csv +2 -0
- image_class.csv +0 -0
- requirements.txt +4 -0
- test.ipynb +194 -0
RXBASE-600_00071-1014-68_NLMIMAGE10_5715ABFD.jpg
ADDED
RXBASE-600_00074-7126-13_NLMIMAGE10_C003606B.jpg
ADDED
RXNAV-600_13668-0095-90_RXNAVIMAGE10_D145E8EF.jpg
ADDED
app.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import tempfile
|
4 |
+
from ultralytics import YOLOv10
|
5 |
+
import pandas as pd
|
6 |
+
from gradio import processing_utils
|
7 |
+
|
8 |
+
df = pd.read_csv('image_class.csv')
|
9 |
+
df = df[['name', 'class']]
|
10 |
+
df.drop_duplicates(inplace=True)
|
11 |
+
print(len(df))
|
12 |
+
df1 = pd.read_csv('image_class.csv')
|
13 |
+
df1 = df1[['name', 'class', 'im_file']]
|
14 |
+
df1['file_name'] = df1['im_file'].apply(lambda v: v.split('_')[-1].split('.')[0])
|
15 |
+
df1.drop(columns='im_file', inplace=True)
|
16 |
+
df1.drop_duplicates(inplace=True)
|
17 |
+
print(df1)
|
18 |
+
print(len(df1))
|
19 |
+
|
20 |
+
def yolov10_inference(image, video, image_size, conf_threshold, iou_threshold):
|
21 |
+
model = YOLOv10('./drug_yolov10.pt')
|
22 |
+
# model = YOLOv10('./pills_yolov10.pt')
|
23 |
+
if image:
|
24 |
+
results = model.predict(source=image, imgsz=image_size, conf=conf_threshold, iou=iou_threshold)
|
25 |
+
annotated_image = results[0].plot()
|
26 |
+
# Print the detected objects' information (class, coordinates, and probability)
|
27 |
+
box = results[0].boxes
|
28 |
+
cls = [int(c) for c in box.cls.tolist()]
|
29 |
+
cnf = [round(f,2) for f in box.conf.tolist()]
|
30 |
+
clcf = '\n'.join([f'Class:{cls[i]} , Confidence:{cnf[i]*100}%' for i in range(len(cls))]) #list(zip(cls,cnf))
|
31 |
+
name = '\n'.join([df[df['class']==n]['name'].item() for n in cls])
|
32 |
+
file_name = image.split('_')[-1].split('.')[0]
|
33 |
+
print(f'file name: {file_name}')
|
34 |
+
try:
|
35 |
+
drug_name = df1[df1['file_name']==file_name]['name'].item()
|
36 |
+
drug_class = df1[df1['file_name']==file_name]['class'].item()
|
37 |
+
drug_name = f'{drug_class}, {drug_name}'
|
38 |
+
print(drug_name)
|
39 |
+
except:
|
40 |
+
drug_name = 'No have data'
|
41 |
+
# print(cls)
|
42 |
+
# print(name)
|
43 |
+
# print(type(clcf))
|
44 |
+
# print("Object type:", box.cls)
|
45 |
+
# print("Coordinates:", box.xyxy)
|
46 |
+
# print("Probability:", box.conf)
|
47 |
+
# print('box.class data tyupe', type(box.cls.tolist()))
|
48 |
+
return annotated_image[:, :, ::-1], None, clcf, name, file_name, drug_name
|
49 |
+
else:
|
50 |
+
video_path = tempfile.mktemp(suffix=".webm")
|
51 |
+
with open(video_path, "wb") as f:
|
52 |
+
with open(video, "rb") as g:
|
53 |
+
f.write(g.read())
|
54 |
+
|
55 |
+
cap = cv2.VideoCapture(video_path)
|
56 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
57 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
58 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
59 |
+
|
60 |
+
output_video_path = tempfile.mktemp(suffix=".webm")
|
61 |
+
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height))
|
62 |
+
|
63 |
+
while cap.isOpened():
|
64 |
+
ret, frame = cap.read()
|
65 |
+
if not ret:
|
66 |
+
break
|
67 |
+
|
68 |
+
results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold, iou=iou_threshold)
|
69 |
+
annotated_frame = results[0].plot()
|
70 |
+
out.write(annotated_frame)
|
71 |
+
|
72 |
+
cap.release()
|
73 |
+
out.release()
|
74 |
+
|
75 |
+
return None, output_video_path
|
76 |
+
|
77 |
+
|
78 |
+
def yolov10_inference_for_examples(image, image_size, conf_threshold, iou_threshold):
|
79 |
+
annotated_image, _, output_class, output_name = yolov10_inference(image, None, image_size, conf_threshold, iou_threshold)
|
80 |
+
return annotated_image#, None, output_class, output_name
|
81 |
+
|
82 |
+
def app():
|
83 |
+
with gr.Blocks():
|
84 |
+
with gr.Row():
|
85 |
+
with gr.Column():
|
86 |
+
# image = gr.Image(type="pil", label="Image", visible=True)
|
87 |
+
image = gr.Image(type="filepath", label="Image", visible=True)
|
88 |
+
video = gr.Video(label="Video", visible=False)
|
89 |
+
input_type = gr.Radio(
|
90 |
+
choices=["Image", "Video"],
|
91 |
+
value="Image",
|
92 |
+
label="Input Type",
|
93 |
+
)
|
94 |
+
file_name = gr.Textbox(label='File Name')
|
95 |
+
file_name.change(outputs=file_name)
|
96 |
+
drug_name = gr.Textbox(label='Drug Name')
|
97 |
+
drug_name.change(outputs=drug_name)
|
98 |
+
|
99 |
+
image_size = gr.Slider(
|
100 |
+
label="Image Size",
|
101 |
+
minimum=0,
|
102 |
+
maximum=1280,
|
103 |
+
step=10,
|
104 |
+
value=640,
|
105 |
+
)
|
106 |
+
conf_threshold = gr.Slider(
|
107 |
+
label="Confidence Threshold",
|
108 |
+
minimum=0.0,
|
109 |
+
maximum=1.0,
|
110 |
+
step=0.05,
|
111 |
+
value=0.25,
|
112 |
+
)
|
113 |
+
iou_threshold = gr.Slider(
|
114 |
+
label="IOU Threshold",
|
115 |
+
minimum=0,
|
116 |
+
maximum=1,
|
117 |
+
step=0.1,
|
118 |
+
value=0.6,
|
119 |
+
)
|
120 |
+
yolov10_infer = gr.Button(value="Detect Objects")
|
121 |
+
|
122 |
+
with gr.Column():
|
123 |
+
output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
|
124 |
+
output_video = gr.Video(label="Annotated Video", visible=False)
|
125 |
+
output_name = gr.Textbox(label='Predicted Drug Name')
|
126 |
+
output_name.change(outputs=output_name)
|
127 |
+
output_class = gr.Textbox(label='Predicted Class')
|
128 |
+
output_class.change(outputs=output_class)
|
129 |
+
|
130 |
+
def update_visibility(input_type):
|
131 |
+
image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
|
132 |
+
video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
|
133 |
+
output_image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
|
134 |
+
output_video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
|
135 |
+
print(f'updated image: {image}')
|
136 |
+
|
137 |
+
return image, video, output_image, output_video
|
138 |
+
|
139 |
+
input_type.change(
|
140 |
+
fn=update_visibility,
|
141 |
+
inputs=[input_type],
|
142 |
+
outputs=[image, video, output_image, output_video],
|
143 |
+
)
|
144 |
+
|
145 |
+
def run_inference(image, video, image_size, conf_threshold, iou_threshold, input_type):
|
146 |
+
if input_type == "Image":
|
147 |
+
return yolov10_inference(image, None, image_size, conf_threshold, iou_threshold)
|
148 |
+
else:
|
149 |
+
return yolov10_inference(None, video, image_size, conf_threshold, iou_threshold)
|
150 |
+
|
151 |
+
|
152 |
+
yolov10_infer.click(
|
153 |
+
fn=run_inference,
|
154 |
+
inputs=[image, video, image_size, conf_threshold, iou_threshold, input_type],
|
155 |
+
outputs=[output_image, output_video, output_class, output_name, file_name, drug_name],
|
156 |
+
)
|
157 |
+
|
158 |
+
gr.Examples(
|
159 |
+
examples = [
|
160 |
+
['./RXBASE-600_00071-1014-68_NLMIMAGE10_5715ABFD.jpg', 280, 0.2, 0.6],
|
161 |
+
['./RXNAV-600_13668-0095-90_RXNAVIMAGE10_D145E8EF.jpg', 640, 0.2, 0.7],
|
162 |
+
['./RXBASE-600_00074-7126-13_NLMIMAGE10_C003606B.jpg', 640, 0.2, 0.8],
|
163 |
+
],
|
164 |
+
fn=yolov10_inference_for_examples,
|
165 |
+
inputs=[
|
166 |
+
image,
|
167 |
+
image_size,
|
168 |
+
conf_threshold,
|
169 |
+
iou_threshold,
|
170 |
+
],
|
171 |
+
outputs=[output_image],
|
172 |
+
cache_examples='lazy',
|
173 |
+
)
|
174 |
+
|
175 |
+
gradio_app = gr.Blocks()
|
176 |
+
with gradio_app:
|
177 |
+
gr.HTML(
|
178 |
+
"""
|
179 |
+
<h1 style='text-align: center'>
|
180 |
+
YOLOv10: Real-Time End-to-End Object Detection
|
181 |
+
</h1>
|
182 |
+
""")
|
183 |
+
gr.HTML(
|
184 |
+
"""
|
185 |
+
<h3 style='text-align: center'>
|
186 |
+
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
|
187 |
+
</h3>
|
188 |
+
""")
|
189 |
+
with gr.Row():
|
190 |
+
with gr.Column():
|
191 |
+
app()
|
192 |
+
if __name__ == '__main__':
|
193 |
+
gradio_app.launch()
|
drug_yolov10.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d953e3db8e56519197a3e6d74d2b078226f7f1cf1de07064631003acb4a493f3
|
3 |
+
size 33211887
|
gradio_cached_examples/23/Annotated Image/ba594e145eaf95ab5434/image.webp
ADDED
gradio_cached_examples/23/indices.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
0
|
gradio_cached_examples/23/log.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
Annotated Image,flag,username,timestamp
|
2 |
+
"{""path"": ""gradio_cached_examples/23/Annotated Image/ba594e145eaf95ab5434/image.webp"", ""url"": ""/file=/tmp/gradio/1d7004412f6a7ce1df9e4d03b3144ae1bbc791ff/image.webp"", ""size"": null, ""orig_name"": ""image.webp"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}",,,2024-06-07 17:57:56.712008
|
gradio_cached_examples/24/Annotated Image/218b53a36785220fa9c1/image.webp
ADDED
gradio_cached_examples/24/indices.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
0
|
gradio_cached_examples/24/log.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
Annotated Image,flag,username,timestamp
|
2 |
+
"{""path"": ""gradio_cached_examples/24/Annotated Image/218b53a36785220fa9c1/image.webp"", ""url"": ""/file=/tmp/gradio/1d7004412f6a7ce1df9e4d03b3144ae1bbc791ff/image.webp"", ""size"": null, ""orig_name"": ""image.webp"", ""mime_type"": null, ""is_stream"": false, ""meta"": {""_type"": ""gradio.FileData""}}",,,2024-06-07 21:20:45.740938
|
image_class.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==4.32.1
|
2 |
+
opencv_python==4.8.1.78
|
3 |
+
opencv_python_headless==4.8.0.74
|
4 |
+
git+https://github.com/THU-MIG/yolov10
|
test.ipynb
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": 25,
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [
|
17 |
+
{
|
18 |
+
"name": "stdout",
|
19 |
+
"output_type": "stream",
|
20 |
+
"text": [
|
21 |
+
"2111\n",
|
22 |
+
" name class file_name\n",
|
23 |
+
"0 Loperamide Hydrochloride 2 MG Oral Capsule 1052 26211358.jpg\n",
|
24 |
+
"1 Minocycline 50 MG Oral Capsule 1137 36231B28.jpg\n",
|
25 |
+
"2 Nortriptyline 10 MG Oral Capsule 1193 24231228.jpg\n",
|
26 |
+
"3 Nortriptyline 25 MG Oral Capsule 1194 20231018.jpg\n",
|
27 |
+
"4 Nortriptyline 50 MG Oral Capsule 1195 2D2316D8.jpg\n",
|
28 |
+
"... ... ... ...\n",
|
29 |
+
"4327 Enalapril Maleate 2.5 MG Oral Tablet 708 DC4D6E2B.jpg\n",
|
30 |
+
"4328 quinapril 5 MG Oral Tablet 1844 EA507553.jpg\n",
|
31 |
+
"4329 trospium chloride 20 MG Oral Tablet 1959 3C519E2C.jpg\n",
|
32 |
+
"4330 metaxalone 400 MG Oral Tablet 1749 C6506353.jpg\n",
|
33 |
+
"4331 naratriptan 2.5 MG Oral Tablet 1775 66453369.jpg\n",
|
34 |
+
"\n",
|
35 |
+
"[4332 rows x 3 columns]\n",
|
36 |
+
"4332\n"
|
37 |
+
]
|
38 |
+
}
|
39 |
+
],
|
40 |
+
"source": [
|
41 |
+
"df = pd.read_csv('image_class.csv')\n",
|
42 |
+
"df = df[['name', 'class']]\n",
|
43 |
+
"df.drop_duplicates(inplace=True)\n",
|
44 |
+
"print(len(df))\n",
|
45 |
+
"df1 = pd.read_csv('image_class.csv')\n",
|
46 |
+
"df1 = df1[['name', 'class', 'im_file']]\n",
|
47 |
+
"df1['file_name'] = df1['im_file'].apply(lambda v: v.split('_')[-1])\n",
|
48 |
+
"df1.drop(columns='im_file', inplace=True)\n",
|
49 |
+
"df1.drop_duplicates(inplace=True)\n",
|
50 |
+
"print(df1)\n",
|
51 |
+
"print(len(df1))"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": 26,
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [
|
59 |
+
{
|
60 |
+
"data": {
|
61 |
+
"text/html": [
|
62 |
+
"<div>\n",
|
63 |
+
"<style scoped>\n",
|
64 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
65 |
+
" vertical-align: middle;\n",
|
66 |
+
" }\n",
|
67 |
+
"\n",
|
68 |
+
" .dataframe tbody tr th {\n",
|
69 |
+
" vertical-align: top;\n",
|
70 |
+
" }\n",
|
71 |
+
"\n",
|
72 |
+
" .dataframe thead th {\n",
|
73 |
+
" text-align: right;\n",
|
74 |
+
" }\n",
|
75 |
+
"</style>\n",
|
76 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
77 |
+
" <thead>\n",
|
78 |
+
" <tr style=\"text-align: right;\">\n",
|
79 |
+
" <th></th>\n",
|
80 |
+
" <th>name</th>\n",
|
81 |
+
" <th>class</th>\n",
|
82 |
+
" <th>file_name</th>\n",
|
83 |
+
" </tr>\n",
|
84 |
+
" </thead>\n",
|
85 |
+
" <tbody>\n",
|
86 |
+
" <tr>\n",
|
87 |
+
" <th>213</th>\n",
|
88 |
+
" <td>pregabalin 75 MG Oral Capsule [Lyrica]</td>\n",
|
89 |
+
" <td>1831</td>\n",
|
90 |
+
" <td>5715ABFD.jpg</td>\n",
|
91 |
+
" </tr>\n",
|
92 |
+
" </tbody>\n",
|
93 |
+
"</table>\n",
|
94 |
+
"</div>"
|
95 |
+
],
|
96 |
+
"text/plain": [
|
97 |
+
" name class file_name\n",
|
98 |
+
"213 pregabalin 75 MG Oral Capsule [Lyrica] 1831 5715ABFD.jpg"
|
99 |
+
]
|
100 |
+
},
|
101 |
+
"execution_count": 26,
|
102 |
+
"metadata": {},
|
103 |
+
"output_type": "execute_result"
|
104 |
+
}
|
105 |
+
],
|
106 |
+
"source": [
|
107 |
+
"# df1[df1.file_name.str.endswith('26211358.jpg')]\n",
|
108 |
+
"df1[df1.file_name.str.endswith('5715ABFD.jpg')]"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "code",
|
113 |
+
"execution_count": 8,
|
114 |
+
"metadata": {},
|
115 |
+
"outputs": [
|
116 |
+
{
|
117 |
+
"ename": "TypeError",
|
118 |
+
"evalue": "'StringMethods' object is not callable",
|
119 |
+
"output_type": "error",
|
120 |
+
"traceback": [
|
121 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
122 |
+
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
|
123 |
+
"Cell \u001b[0;32mIn[8], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# file_name = '00071-1014-68_NLMIMAGE10_5715ABFD.jpeg'\u001b[39;00m\n\u001b[1;32m 2\u001b[0m file_name \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m23155-0055-19_NLMIMAGE10_66453369.jpg\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m----> 3\u001b[0m df1[\u001b[43mdf1\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mfile_name\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstr\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39msplit(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m_\u001b[39m\u001b[38;5;124m'\u001b[39m,\u001b[38;5;241m1\u001b[39m)[\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\u001b[38;5;241m==\u001b[39mfile_name]\n",
|
124 |
+
"\u001b[0;31mTypeError\u001b[0m: 'StringMethods' object is not callable"
|
125 |
+
]
|
126 |
+
}
|
127 |
+
],
|
128 |
+
"source": [
|
129 |
+
"# file_name = '00071-1014-68_NLMIMAGE10_5715ABFD.jpeg'\n",
|
130 |
+
"file_name = '23155-0055-19_NLMIMAGE10_66453369.jpg'\n",
|
131 |
+
"df1[df1['file_name'].str().split('_',1)[-1]==file_name]"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "code",
|
136 |
+
"execution_count": 15,
|
137 |
+
"metadata": {},
|
138 |
+
"outputs": [
|
139 |
+
{
|
140 |
+
"data": {
|
141 |
+
"text/plain": [
|
142 |
+
"0 [00093-0311-01, RXNAVIMAGE10, 26211358.jpg]\n",
|
143 |
+
"1 [00093-3165-01, RXNAVIMAGE10, 36231B28.jpg]\n",
|
144 |
+
"2 [00093-0810-01, RXNAVIMAGE10, 24231228.jpg]\n",
|
145 |
+
"3 [00093-0811-01, RXNAVIMAGE10, 20231018.jpg]\n",
|
146 |
+
"4 [00093-0812-01, RXNAVIMAGE10, 2D2316D8.jpg]\n",
|
147 |
+
" ... \n",
|
148 |
+
"8629 [16714-0442-01, NLMIMAGE10, DC4D6E2B.jpg]\n",
|
149 |
+
"8630 [31722-0267-90, NLMIMAGE10, EA507553.jpg]\n",
|
150 |
+
"8631 [00574-0145-60, NLMIMAGE10, 3C519E2C.jpg]\n",
|
151 |
+
"8632 [64720-0126-10, NLMIMAGE10, C6506353.jpg]\n",
|
152 |
+
"8633 [23155-0055-19, NLMIMAGE10, 66453369.jpg]\n",
|
153 |
+
"Name: file_name, Length: 8634, dtype: object"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
"execution_count": 15,
|
157 |
+
"metadata": {},
|
158 |
+
"output_type": "execute_result"
|
159 |
+
}
|
160 |
+
],
|
161 |
+
"source": [
|
162 |
+
"df1.file_name.str.split('_')"
|
163 |
+
]
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"cell_type": "code",
|
167 |
+
"execution_count": null,
|
168 |
+
"metadata": {},
|
169 |
+
"outputs": [],
|
170 |
+
"source": []
|
171 |
+
}
|
172 |
+
],
|
173 |
+
"metadata": {
|
174 |
+
"kernelspec": {
|
175 |
+
"display_name": "yolov9",
|
176 |
+
"language": "python",
|
177 |
+
"name": "python3"
|
178 |
+
},
|
179 |
+
"language_info": {
|
180 |
+
"codemirror_mode": {
|
181 |
+
"name": "ipython",
|
182 |
+
"version": 3
|
183 |
+
},
|
184 |
+
"file_extension": ".py",
|
185 |
+
"mimetype": "text/x-python",
|
186 |
+
"name": "python",
|
187 |
+
"nbconvert_exporter": "python",
|
188 |
+
"pygments_lexer": "ipython3",
|
189 |
+
"version": "3.9.19"
|
190 |
+
}
|
191 |
+
},
|
192 |
+
"nbformat": 4,
|
193 |
+
"nbformat_minor": 2
|
194 |
+
}
|