1ngsm0del's picture
edit drug name to show ground truth as well
701ec66
import gradio as gr
import cv2
import tempfile
from ultralytics import YOLOv10
import pandas as pd
from gradio import processing_utils
df = pd.read_csv('image_class.csv')
df = df[['name', 'class']]
df.drop_duplicates(inplace=True)
print(len(df))
df1 = pd.read_csv('image_class.csv')
df1 = df1[['name', 'class', 'im_file']]
df1['file_name'] = df1['im_file'].apply(lambda v: v.split('_')[-1].split('.')[0])
df1.drop(columns='im_file', inplace=True)
df1.drop_duplicates(inplace=True)
print(df1)
print(len(df1))
def yolov10_inference(image, video, image_size, conf_threshold, iou_threshold):
model = YOLOv10('./drug_yolov10.pt')
# model = YOLOv10('./pills_yolov10.pt')
if image:
results = model.predict(source=image, imgsz=image_size, conf=conf_threshold, iou=iou_threshold)
annotated_image = results[0].plot()
# Print the detected objects' information (class, coordinates, and probability)
box = results[0].boxes
cls = [int(c) for c in box.cls.tolist()]
cnf = [round(f,2) for f in box.conf.tolist()]
clcf = '\n'.join([f'Class:{cls[i]} , Confidence:{cnf[i]*100}%' for i in range(len(cls))]) #list(zip(cls,cnf))
name = '\n'.join([df[df['class']==n]['name'].item() for n in cls])
file_name = image.split('_')[-1].split('.')[0]
print(f'file name: {file_name}')
try:
drug_name = df1[df1['file_name']==file_name]['name'].item()
drug_class = df1[df1['file_name']==file_name]['class'].item()
drug_name = f'{drug_class}, {drug_name}'
print(drug_name)
except:
drug_name = 'No have data'
# print(cls)
# print(name)
# print(type(clcf))
# print("Object type:", box.cls)
# print("Coordinates:", box.xyxy)
# print("Probability:", box.conf)
# print('box.class data tyupe', type(box.cls.tolist()))
return annotated_image[:, :, ::-1], None, clcf, name, file_name, drug_name
else:
video_path = tempfile.mktemp(suffix=".webm")
with open(video_path, "wb") as f:
with open(video, "rb") as g:
f.write(g.read())
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_video_path = tempfile.mktemp(suffix=".webm")
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = model.predict(source=frame, imgsz=image_size, conf=conf_threshold, iou=iou_threshold)
annotated_frame = results[0].plot()
out.write(annotated_frame)
cap.release()
out.release()
return None, output_video_path
def yolov10_inference_for_examples(image, image_size, conf_threshold, iou_threshold):
annotated_image, _, output_class, output_name = yolov10_inference(image, None, image_size, conf_threshold, iou_threshold)
return annotated_image#, None, output_class, output_name
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
# image = gr.Image(type="pil", label="Image", visible=True)
image = gr.Image(type="filepath", label="Image", visible=True)
video = gr.Video(label="Video", visible=False)
input_type = gr.Radio(
choices=["Image", "Video"],
value="Image",
label="Input Type",
)
file_name = gr.Textbox(label='File Name')
file_name.change(outputs=file_name)
drug_name = gr.Textbox(label='Drug Name (Ground Truth)')
drug_name.change(outputs=drug_name)
image_size = gr.Slider(
label="Image Size",
minimum=0,
maximum=1280,
step=10,
value=640,
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.25,
)
iou_threshold = gr.Slider(
label="IOU Threshold",
minimum=0,
maximum=1,
step=0.1,
value=0.6,
)
yolov10_infer = gr.Button(value="Detect Objects")
with gr.Column():
output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
output_video = gr.Video(label="Annotated Video", visible=False)
output_name = gr.Textbox(label='Predicted Drug Name')
output_name.change(outputs=output_name)
output_class = gr.Textbox(label='Predicted Class')
output_class.change(outputs=output_class)
def update_visibility(input_type):
image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
output_image = gr.update(visible=True) if input_type == "Image" else gr.update(visible=False)
output_video = gr.update(visible=False) if input_type == "Image" else gr.update(visible=True)
print(f'updated image: {image}')
return image, video, output_image, output_video
input_type.change(
fn=update_visibility,
inputs=[input_type],
outputs=[image, video, output_image, output_video],
)
def run_inference(image, video, image_size, conf_threshold, iou_threshold, input_type):
if input_type == "Image":
return yolov10_inference(image, None, image_size, conf_threshold, iou_threshold)
else:
return yolov10_inference(None, video, image_size, conf_threshold, iou_threshold)
yolov10_infer.click(
fn=run_inference,
inputs=[image, video, image_size, conf_threshold, iou_threshold, input_type],
outputs=[output_image, output_video, output_class, output_name, file_name, drug_name],
)
gr.Examples(
examples = [
['./RXBASE-600_00071-1014-68_NLMIMAGE10_5715ABFD.jpg', 280, 0.2, 0.6],
['./RXNAV-600_13668-0095-90_RXNAVIMAGE10_D145E8EF.jpg', 640, 0.2, 0.7],
['./RXBASE-600_00074-7126-13_NLMIMAGE10_C003606B.jpg', 640, 0.2, 0.8],
],
fn=yolov10_inference_for_examples,
inputs=[
image,
image_size,
conf_threshold,
iou_threshold,
],
outputs=[output_image],
cache_examples='lazy',
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
YOLOv10: Real-Time End-to-End Object Detection
</h1>
""")
gr.HTML(
"""
<h3 style='text-align: center'>
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
</h3>
""")
with gr.Row():
with gr.Column():
app()
if __name__ == '__main__':
gradio_app.launch()