File size: 23,776 Bytes
3bbba47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aaea48
3bbba47
 
 
 
 
 
 
1aaea48
3bbba47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aaea48
 
 
 
 
 
 
 
3bbba47
 
 
 
 
 
5179973
3bbba47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8b7bfc
3bbba47
d8b7bfc
3bbba47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5179973
d8b7bfc
3bbba47
d8b7bfc
3bbba47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125a54b
3bbba47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5179973
 
3bbba47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf6c1c
 
 
 
 
 
 
3c175df
3bbba47
 
 
 
 
 
 
 
 
 
 
6ba1fe0
 
 
463ef07
 
 
6ba1fe0
463ef07
6ba1fe0
463ef07
6ba1fe0
 
3bbba47
6ba1fe0
ce3ce58
 
 
5179973
ce3ce58
125a54b
bdcef78
ce3ce58
3bbba47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import argparse
import datetime
import json
import os
import time

import gradio as gr
import requests

from llava.conversation import (default_conversation, conv_templates,
                                   SeparatorStyle)
from llava.constants import LOGDIR
from llava.utils import (build_logger, server_error_msg,
    violates_moderation, moderation_msg)
import hashlib


logger = build_logger("gradio_web_server", "gradio_web_server.log")

headers = {"User-Agent": "UGround Client"}

no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)

priority = {
    "vicuna-13b": "aaaaaaa",
    "koala-13b": "aaaaaab",
}
from PIL import Image
import io
import base64


def resize_image(image, default_width=(1344, 896), request_width=None):
    # 如果 request 中指定了 width,则使用传入的值
    if request_width:
        default_width = request_width

    original_width, original_height = image.size

    print("Original size:", original_width, original_height)

    # 根据宽高比决定 resize 逻辑
    if original_width >= original_height:
        # 根据 width 的值进行 resize
        new_width = default_width[0]
        resize_scale = new_width / original_width
        new_height = round(original_height * resize_scale)
    else:
        # 根据 width 的值进行 resize
        new_width = default_width[1]
        resize_scale = new_width / original_width
        new_height = round(original_height * resize_scale)

    # 调整图像大小
    resized_image = image.resize((new_width, new_height))
    print("After initial resize:", new_width, new_height)

    # 如果高度仍然超过 2016,则将图片固定调整为 896x2016
    if new_height > 2016:
        new_width, new_height = 672, 2016
        resized_image = resized_image.resize((new_width, new_height))
        print("Adjusted to fixed size:", new_width, new_height)

    return resized_image


from PIL import Image, ImageDraw


def draw_circle_on_image(image, x, y, radius=20, color=(255, 0, 0)):
    # 获取图片的宽度和高度
    img_width, img_height = image.size

    # 判断 x 坐标是否在图片范围内
    if not (0 <= x <= img_width):
        print(f"x 坐标 {x} 不在图片宽度范围内,直接返回原图。")
        return image

    # 判断 y 坐标是否在图片范围内
    if not (0 <= y <= img_height):
        print(f"y 坐标 {y} 超出了图片高度范围,尝试减去 224。")
        y -= 224
        # 如果调整后的 y 坐标仍然超出范围,返回原图
        if not (0 <= y <= img_height):
            print(f"调整后的 y 坐标 {y} 仍然超出了图片范围,直接返回原图。")
            return image

    # 创建一个可以在图片上绘制的对象
    draw = ImageDraw.Draw(image)

    # 定义圆圈的外接矩形框
    left_up_point = (x - radius, y - radius)
    right_down_point = (x + radius, y + radius)

    # 绘制圆圈 (outline 参数设置圆圈的颜色,width 设置线条粗细)
    draw.ellipse([left_up_point, right_down_point], outline=color, width=5)

    return image,(x,y)

def get_conv_log_filename():
    t = datetime.datetime.now()
    name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
    return name


def get_model_list():
    ret = requests.post(args.controller_url + "/refresh_all_workers")
    assert ret.status_code == 200
    ret = requests.post(args.controller_url + "/list_models")
    models = ret.json()["models"]
    models.sort(key=lambda x: priority.get(x, x))
    logger.info(f"Models: {models}")
    return models


get_window_url_params = """
function() {
    const params = new URLSearchParams(window.location.search);
    url_params = Object.fromEntries(params);
    console.log(url_params);
    return url_params;
    }
"""


def load_demo(url_params, request: gr.Request):
    logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")

    dropdown_update = gr.Dropdown(visible=True)
    if "model" in url_params:
        model = url_params["model"]
        if model in models:
            dropdown_update = gr.Dropdown(value=model, visible=True)

    state = default_conversation.copy()
    return state, dropdown_update


def load_demo_refresh_model_list(request: gr.Request):
    logger.info(f"load_demo. ip: {request.client.host}")
    models = get_model_list()
    state = default_conversation.copy()
    dropdown_update = gr.Dropdown(
        choices=models,
        value=models[0] if len(models) > 0 else ""
    )
    return state, dropdown_update


def vote_last_response(state, vote_type, model_selector, request: gr.Request):
    with open(get_conv_log_filename(), "a") as fout:
        data = {
            "tstamp": round(time.time(), 4),
            "type": vote_type,
            "model": model_selector,
            "state": state.dict(),
            "ip": request.client.host,
        }
        fout.write(json.dumps(data) + "\n")


def upvote_last_response(state, model_selector, request: gr.Request):
    logger.info(f"upvote. ip: {request.client.host}")
    vote_last_response(state, "upvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def downvote_last_response(state, model_selector, request: gr.Request):
    logger.info(f"downvote. ip: {request.client.host}")
    vote_last_response(state, "downvote", model_selector, request)
    return ("",) + (disable_btn,) * 3


def flag_last_response(state, model_selector, request: gr.Request):
    logger.info(f"flag. ip: {request.client.host}")
    vote_last_response(state, "flag", model_selector, request)
    return ("",) + (disable_btn,) * 3


def regenerate(state, image_process_mode, request: gr.Request):
    logger.info(f"regenerate. ip: {request.client.host}")
    state.messages[-1][-1] = None
    prev_human_msg = state.messages[-2]
    if type(prev_human_msg[1]) in (tuple, list):
        prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5


def clear_history(request: gr.Request):
    logger.info(f"clear_history. ip: {request.client.host}")
    state = default_conversation.copy()
    return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5


def add_text(state, text, image, image_process_mode, request: gr.Request):
    logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
    if len(text) <= 0 and image is None:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
    if args.moderate:
        flagged = violates_moderation(text)
        if flagged:
            state.skip_next = True
            return (state, state.to_gradio_chatbot(), moderation_msg, None) + (
                no_change_btn,) * 5

    text = text[:500]  # Hard cut-off
    text=f"In the screenshot, where are the pixel coordinates (x, y) of the element corresponding to \"{text}\"?"

    if image is not None:
        text = text[:1200]  # Hard cut-off for images
        if '<image>' not in text:
            # text = '<Image><image></Image>' + text
            text = text + '\n<image>'
        resized_image = resize_image(image)
        text = (text, resized_image, image_process_mode)
        if len(state.get_images(return_pil=True)) > 0:
            state = default_conversation.copy()
    state.append_message(state.roles[0], text)
    state.append_message(state.roles[1], None)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5


def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request):
    logger.info(f"http_bot. ip: {request.client.host}")
    start_tstamp = time.time()
    model_name = model_selector

    if state.skip_next:
        # This generate call is skipped due to invalid inputs
        yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
        return

    if len(state.messages) == state.offset + 2:
        # First round of conversation
        if "llava" in model_name.lower():
            if 'llama-2' in model_name.lower():
                template_name = "llava_llama_2"
            elif "mistral" in model_name.lower() or "mixtral" in model_name.lower():
                if 'orca' in model_name.lower():
                    template_name = "mistral_orca"
                elif 'hermes' in model_name.lower():
                    template_name = "chatml_direct"
                else:
                    template_name = "mistral_instruct"
            elif 'llava-v1.6-34b' in model_name.lower():
                template_name = "chatml_direct"
            elif "v1" in model_name.lower():
                if 'mmtag' in model_name.lower():
                    template_name = "v1_mmtag"
                elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
                    template_name = "v1_mmtag"
                else:
                    template_name = "llava_v1"
            elif "mpt" in model_name.lower():
                template_name = "mpt"
            else:
                if 'mmtag' in model_name.lower():
                    template_name = "v0_mmtag"
                elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
                    template_name = "v0_mmtag"
                else:
                    template_name = "llava_v0"
        elif "mpt" in model_name:
            template_name = "mpt_text"
        elif "llama-2" in model_name:
            template_name = "llama_2"
        else:
            template_name = "vicuna_v1"
        new_state = conv_templates[template_name].copy()
        new_state.append_message(new_state.roles[0], state.messages[-2][1])
        new_state.append_message(new_state.roles[1], None)
        state = new_state

    # Query worker address
    controller_url = args.controller_url
    ret = requests.post(controller_url + "/get_worker_address",
            json={"model": model_name})
    worker_addr = ret.json()["address"]
    logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")

    # No available worker
    if worker_addr == "":
        state.messages[-1][-1] = server_error_msg
        yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
        return

    # Construct prompt





    prompt = state.get_prompt()

    all_images = state.get_images(return_pil=True)
    all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
    for image, hash in zip(all_images, all_image_hash):
        t = datetime.datetime.now()
        filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
        if not os.path.isfile(filename):
            os.makedirs(os.path.dirname(filename), exist_ok=True)
            image.save(filename)

    # Make requests
    pload = {
        "model": model_name,
        "prompt": prompt,
        "temperature": float(temperature),
        "top_p": float(top_p),
        "max_new_tokens": min(int(max_new_tokens), 1536),
        "stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
        "images": f'List of {len(state.get_images())} images: {all_image_hash}',
    }
    logger.info(f"==== request ====\n{pload}")

    pload['images'] = state.get_images()

    state.messages[-1][-1] = "▌"
    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5

    try:
        # Stream output
        full_output = ""
        response = requests.post(worker_addr + "/worker_generate_stream",
            headers=headers, json=pload, stream=True, timeout=10)
        for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
            if chunk:
                data = json.loads(chunk.decode())
                if data["error_code"] == 0:
                    output = data["text"][len(prompt):].strip()
                    state.messages[-1][-1] = output + "▌"
                    # full_output += output
                    yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
                else:
                    output = data["text"] + f" (error_code: {data['error_code']})"
                    state.messages[-1][-1] = output
                    yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
                    return
                time.sleep(0.03)
        # full_output=state.messages[-1][-1]
        # if "▌" in full_output:
        #     full_output=full_output[:-1]
    except requests.exceptions.RequestException as e:
        state.messages[-1][-1] = server_error_msg
        yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
        return

    state.messages[-1][-1] = state.messages[-1][-1][:-1]
    full_output=state.messages[-1][-1][:-1]
    yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5

    # print(f"Complete output: {full_output}")
    # logger.info(f"Complete output: {full_output}")

    finish_tstamp = time.time()
    logger.info(f"{output}")

    print(f"Complete output: {full_output}")
    logger.info(f"Complete output: {full_output}")
    full_output=output
    logger.info(f"{output}")

    print(f"Complete output: {full_output}")
    logger.info(f"Complete output: {full_output}")

    original_coord=(0,0)
    try:
        original_coord = eval(full_output)
        logger.info(f"successfully get {original_coord}")
    except Exception as e:
        logger.info(f"{e}")

    if len(all_images) > 0:
        # 假设我们对第一张图片进行 resize 并展示

        resized_image,coordinates = draw_circle_on_image(resize_image(all_images[0]),original_coord[0],original_coord[1])
        # state.append_message(state.roles[1], ("", resized_image,"Default"))
        yield (state, state.to_gradio_chatbot(resized_image,coordinates)) + (enable_btn,) * 5

    with open(get_conv_log_filename(), "a") as fout:
        data = {
            "tstamp": round(finish_tstamp, 4),
            "type": "chat",
            "model": model_name,
            "start": round(start_tstamp, 4),
            "finish": round(finish_tstamp, 4),
            "state": state.dict(),
            "images": all_image_hash,
            "ip": request.client.host,
        }
        fout.write(json.dumps(data) + "\n")

title_markdown = ("""
# UGround: Universal Visual Grounding for GUI Agents
[[🏠Project Homepage](https://osu-nlp-group.github.io/UGround/)] [[Code](https://github.com/OSU-NLP-Group/UGround)] [[😊Model](https://huggingface.co/osunlp/UGround)][[📚Paper](https://arxiv.org/abs/2410.05243)]
""")

tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")


learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI. Please contact us if you find any potential violation.
""")

block_css = """

#buttons button {
    min-width: min(120px,100%);
}

#chatbot img {
    max-width: 80%;    /* 宽图片根据宽度调整 */
    max-height: 80vh;  /* 高图片根据视口高度调整 */
    width: auto;        /* 保持宽度自适应 */
    height: auto;       /* 保持高度自适应 */
    object-fit: contain; /* 保持图片宽高比,不失真 */
}

"""

def build_demo(embed_mode, cur_dir=None, concurrency_count=1):
    textbox = gr.Textbox(show_label=False, placeholder="Enter an element description (referring expression) and press ENTER", container=False)
    with gr.Blocks(title="UGround", theme=gr.themes.Default(), css=block_css) as demo:
        state = gr.State()

        if not embed_mode:
            gr.Markdown(title_markdown)

        with gr.Row():
            with gr.Column(scale=3):
                with gr.Row(elem_id="model_selector_row"):
                    model_selector = gr.Dropdown(
                        choices=models,
                        value=models[0] if len(models) > 0 else "",
                        interactive=True,
                        show_label=False,
                        container=False)
                # model_selector="llava-UGround-v1-4bit"

                imagebox = gr.Image(type="pil")
                image_process_mode = gr.Radio(
                    ["Crop", "Resize", "Pad", "Default"],
                    value="Default",
                    label="Preprocess for non-square image", visible=False)

                if cur_dir is None:
                    cur_dir = os.path.dirname(os.path.abspath(__file__))
                gr.Examples(examples=[
                    [f"{cur_dir}/amazon.jpg",f"Search bar at the top of the page"],
                    [f"{cur_dir}/shopping.jpg", f"delete button for the second item in the cart list"],
                    [f"{cur_dir}/ios.jpg", f"Open Maps"],
                    [f"{cur_dir}/toggle.jpg", f"toggle button labeled by VPN"],
                    [f"{cur_dir}/semantic.jpg", f"Home"],
                    [f"{cur_dir}/accweather.jpg", f"Select May"],
                    [f"{cur_dir}/arxiv.jpg", f"Home"],
                    [f"{cur_dir}/arxiv.jpg", f"Edit the page"],
                    [f"{cur_dir}/ios.jpg", f"icon at the top right corner"],
                    [f"{cur_dir}/health.jpg", f"text labeled by 2023/11/26"],

                    # toggle button labeled by VPN
                    # Button labeled by 2023/11/26
                    # [f"{cur_dir}/examples/waterview.jpg", "What are the things I should be cautious about when I visit here?"],
                ], inputs=[imagebox, textbox],examples_per_page=4)
                # temperature=0
                # top_p=0.7
                # max_output_tokens=16384
                #
                with gr.Accordion("Parameters", open=False) as parameter_row:
                    temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0, step=0.1, interactive=True, label="Temperature",)
                    top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0, step=0.1, interactive=True, label="Top P",)
                    max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)

            with gr.Column(scale=8):
                chatbot = gr.Chatbot(
                    elem_id="chatbot",
                    label="UGround Chatbot",
                    height=650,
                    # min_width=400,
                    layout="panel",
                )
                with gr.Row():
                    with gr.Column(scale=8):
                        textbox.render()
                    with gr.Column(scale=1, min_width=50):
                        submit_btn = gr.Button(value="Send", variant="primary")
                with gr.Row(elem_id="buttons") as button_row:
                    upvote_btn = gr.Button(value="👍  Upvote", interactive=False)
                    downvote_btn = gr.Button(value="👎  Downvote", interactive=False)
                    flag_btn = gr.Button(value="⚠️  Flag", interactive=False)
                    #stop_btn = gr.Button(value="⏹️  Stop Generation", interactive=False)
                    regenerate_btn = gr.Button(value="🔄  Regenerate", interactive=False)
                    clear_btn = gr.Button(value="🗑️  Clear", interactive=False)

        if not embed_mode:
            gr.Markdown(tos_markdown)
            gr.Markdown(learn_more_markdown)
        url_params = gr.JSON(visible=False)

        # Register listeners
        btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
        upvote_btn.click(
            upvote_last_response,
            [state, model_selector],
            [textbox, upvote_btn, downvote_btn, flag_btn]
        )
        downvote_btn.click(
            downvote_last_response,
            [state, model_selector],
            [textbox, upvote_btn, downvote_btn, flag_btn]
        )
        flag_btn.click(
            flag_last_response,
            [state, model_selector],
            [textbox, upvote_btn, downvote_btn, flag_btn]
        )

        regenerate_btn.click(
            regenerate,
            [state, image_process_mode],
            [state, chatbot, textbox, imagebox] + btn_list
        ).then(
            http_bot,
            [state, model_selector, temperature, top_p, max_output_tokens],
            [state, chatbot] + btn_list,
            concurrency_limit=concurrency_count
        )

        clear_btn.click(
            clear_history,
            None,
            [state, chatbot, textbox, imagebox] + btn_list,
            queue=False
        )

        textbox.submit(
            add_text,
            [state, textbox, imagebox, image_process_mode],
            [state, chatbot, textbox, imagebox] + btn_list,
            queue=False
        ).then(
            http_bot,
            [state, model_selector, temperature, top_p, max_output_tokens],
            [state, chatbot] + btn_list,
            concurrency_limit=concurrency_count
        )

        submit_btn.click(
            add_text,
            [state, textbox, imagebox, image_process_mode],
            [state, chatbot, textbox, imagebox] + btn_list
        ).then(
            http_bot,
            [state, model_selector, temperature, top_p, max_output_tokens],
            [state, chatbot] + btn_list,
            concurrency_limit=concurrency_count
        )

        if args.model_list_mode == "once":
            demo.load(
                load_demo,
                [url_params],
                [state, model_selector],
                _js=get_window_url_params
            )
        elif args.model_list_mode == "reload":
            demo.load(
                load_demo_refresh_model_list,
                None,
                [state, model_selector],
                queue=False
            )
        else:
            raise ValueError(f"Unknown model list mode: {args.model_list_mode}")

    return demo


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int)
    parser.add_argument("--controller-url", type=str, default="http://localhost:21001")
    parser.add_argument("--concurrency-count", type=int, default=2)
    parser.add_argument("--model-list-mode", type=str, default="once",
        choices=["once", "reload"])
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--moderate", action="store_true")
    parser.add_argument("--embed", action="store_true")
    args = parser.parse_args()
    logger.info(f"args: {args}")

    models = get_model_list()

    logger.info(args)
    demo = build_demo(args.embed, concurrency_count=args.concurrency_count)
    demo.queue(
        api_open=False
    ).launch(
        server_name=args.host,
        server_port=args.port,
        share=args.share
    )