Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torchvision.transforms as tvf | |
from .modules import InterestPointModule, CorrespondenceModule | |
def warp_homography_batch(sources, homographies): | |
""" | |
Batch warp keypoints given homographies. From https://github.com/TRI-ML/KP2D. | |
Parameters | |
---------- | |
sources: torch.Tensor (B,H,W,C) | |
Keypoints vector. | |
homographies: torch.Tensor (B,3,3) | |
Homographies. | |
Returns | |
------- | |
warped_sources: torch.Tensor (B,H,W,C) | |
Warped keypoints vector. | |
""" | |
B, H, W, _ = sources.shape | |
warped_sources = [] | |
for b in range(B): | |
source = sources[b].clone() | |
source = source.view(-1, 2) | |
""" | |
[X, [M11, M12, M13 [x, M11*x + M12*y + M13 [M11, M12 [M13, | |
Y, = M21, M22, M23 * y, = M21*x + M22*y + M23 = [x, y] * M21, M22 + M23, | |
Z] M31, M32, M33] 1] M31*x + M32*y + M33 M31, M32].T M33] | |
""" | |
source = torch.addmm(homographies[b, :, 2], source, homographies[b, :, :2].t()) | |
source.mul_(1 / source[:, 2].unsqueeze(1)) | |
source = source[:, :2].contiguous().view(H, W, 2) | |
warped_sources.append(source) | |
return torch.stack(warped_sources, dim=0) | |
class PointModel(nn.Module): | |
def __init__(self, is_test=False): | |
super(PointModel, self).__init__() | |
self.is_test = is_test | |
self.interestpoint_module = InterestPointModule(is_test=self.is_test) | |
self.correspondence_module = CorrespondenceModule() | |
self.norm_rgb = tvf.Normalize( | |
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] | |
) | |
def forward(self, *args): | |
img = args[0] | |
img = self.norm_rgb(img) | |
score, coord, desc = self.interestpoint_module(img) | |
return score, coord, desc | |