File size: 9,007 Bytes
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
 
 
 
 
a80d6bb
 
 
c74a070
a80d6bb
 
 
c74a070
 
 
a80d6bb
c74a070
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
c74a070
a80d6bb
 
 
 
 
 
 
 
 
c74a070
a80d6bb
 
 
c74a070
a80d6bb
 
 
 
c74a070
a80d6bb
 
 
c74a070
 
a80d6bb
 
 
 
 
 
 
c74a070
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
a80d6bb
 
c74a070
 
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
a80d6bb
 
c74a070
 
 
 
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
a80d6bb
 
 
 
 
 
c74a070
 
a80d6bb
 
 
 
c74a070
 
 
 
 
 
a80d6bb
c74a070
 
 
a80d6bb
 
 
 
 
c74a070
a80d6bb
 
 
 
 
 
 
 
 
c74a070
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
c74a070
 
 
 
 
 
 
 
 
a80d6bb
 
 
 
 
 
c74a070
 
 
 
 
 
 
 
 
a80d6bb
 
 
 
 
 
 
 
 
 
 
 
 
c74a070
 
 
 
 
a80d6bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch
import numpy as np
import os, time, random
import argparse
from torch.utils.data import Dataset, DataLoader
from PIL import Image as PILImage
from glob import glob
from tqdm import tqdm
import rawpy
import colour_demosaicing

from .InvISP.model.model import InvISPNet
from .utils.common import Notify
from datasets.noise import (
    camera_params,
    addGStarNoise,
    addPStarNoise,
    addQuantNoise,
    addRowNoise,
    sampleK,
)


class NoiseSimulator:
    def __init__(self, device, ckpt_path="./datasets/InvISP/pretrained/canon.pth"):
        self.device = device

        # load Invertible ISP Network
        self.net = (
            InvISPNet(channel_in=3, channel_out=3, block_num=8).to(self.device).eval()
        )
        self.net.load_state_dict(torch.load(ckpt_path), strict=False)
        print(
            Notify.INFO, "Loaded ISPNet checkpoint: {}".format(ckpt_path), Notify.ENDC
        )

        # white balance parameters
        self.wb = np.array([2020.0, 1024.0, 1458.0, 1024.0])

        # use Canon EOS 5D4 noise parameters provided by ELD
        self.camera_params = camera_params

        # random specify exposure time ratio from 50 to 150
        self.ratio_min = 50
        self.ratio_max = 150
        pass

    # inverse demosaic
    # input: [H, W, 3]
    # output: [H, W]
    def invDemosaic(self, img):
        img_R = img[::2, ::2, 0]
        img_G1 = img[::2, 1::2, 1]
        img_G2 = img[1::2, ::2, 1]
        img_B = img[1::2, 1::2, 2]
        raw_img = np.ones(img.shape[:2])
        raw_img[::2, ::2] = img_R
        raw_img[::2, 1::2] = img_G1
        raw_img[1::2, ::2] = img_G2
        raw_img[1::2, 1::2] = img_B
        return raw_img

    # demosaic - nearest ver
    # input: [H, W]
    # output: [H, W, 3]
    def demosaicNearest(self, img):
        raw = np.ones((img.shape[0], img.shape[1], 3))
        raw[::2, ::2, 0] = img[::2, ::2]
        raw[::2, 1::2, 0] = img[::2, ::2]
        raw[1::2, ::2, 0] = img[::2, ::2]
        raw[1::2, 1::2, 0] = img[::2, ::2]
        raw[::2, ::2, 2] = img[1::2, 1::2]
        raw[::2, 1::2, 2] = img[1::2, 1::2]
        raw[1::2, ::2, 2] = img[1::2, 1::2]
        raw[1::2, 1::2, 2] = img[1::2, 1::2]
        raw[::2, ::2, 1] = img[::2, 1::2]
        raw[::2, 1::2, 1] = img[::2, 1::2]
        raw[1::2, ::2, 1] = img[1::2, ::2]
        raw[1::2, 1::2, 1] = img[1::2, ::2]
        return raw

    # demosaic
    # input: [H, W]
    # output: [H, W, 3]
    def demosaic(self, img):
        return colour_demosaicing.demosaicing_CFA_Bayer_bilinear(img, "RGGB")

    # load rgb image
    def path2rgb(self, path):
        return torch.from_numpy(np.array(PILImage.open(path)) / 255.0)

    # InvISP
    # input: rgb image [H, W, 3]
    # output: raw image [H, W]
    def rgb2raw(self, rgb, batched=False):
        # 1. rgb -> invnet
        if not batched:
            rgb = rgb.unsqueeze(0)

        rgb = rgb.permute(0, 3, 1, 2).float().to(self.device)
        with torch.no_grad():
            reconstruct_raw = self.net(rgb, rev=True)

        pred_raw = reconstruct_raw.detach().permute(0, 2, 3, 1)
        pred_raw = torch.clamp(pred_raw, 0, 1)

        if not batched:
            pred_raw = pred_raw[0, ...]

        pred_raw = pred_raw.cpu().numpy()

        # 2. -> inv gamma
        norm_value = np.power(16383, 1 / 2.2)
        pred_raw *= norm_value
        pred_raw = np.power(pred_raw, 2.2)

        # 3. -> inv white balance
        wb = self.wb / self.wb.max()
        pred_raw = pred_raw / wb[:-1]

        # 4. -> add black level
        pred_raw += self.camera_params["black_level"]

        # 5. -> inv demosaic
        if not batched:
            pred_raw = self.invDemosaic(pred_raw)
        else:
            preds = []
            for i in range(pred_raw.shape[0]):
                preds.append(self.invDemosaic(pred_raw[i]))
            pred_raw = np.stack(preds, axis=0)

        return pred_raw

    def raw2noisyRaw(self, raw, ratio_dec=1, batched=False):
        if not batched:
            ratio = (random.uniform(self.ratio_min, self.ratio_max) - 1) * ratio_dec + 1
            raw = raw.copy() / ratio

            K = sampleK(self.camera_params["Kmin"], self.camera_params["Kmax"])
            q = 1 / (
                self.camera_params["max_value"] - self.camera_params["black_level"]
            )

            raw = addPStarNoise(raw, K)
            raw = addGStarNoise(
                raw,
                K,
                self.camera_params["G_shape"],
                self.camera_params["Profile-1"]["G_scale"],
            )
            raw = addRowNoise(raw, K, self.camera_params["Profile-1"]["R_scale"])
            raw = addQuantNoise(raw, q)
            raw *= ratio
            return raw

        else:
            raw = raw.copy()
            for i in range(raw.shape[0]):
                ratio = random.uniform(self.ratio_min, self.ratio_max)
                raw[i] /= ratio

                K = sampleK(self.camera_params["Kmin"], self.camera_params["Kmax"])
                q = 1 / (
                    self.camera_params["max_value"] - self.camera_params["black_level"]
                )

                raw[i] = addPStarNoise(raw[i], K)
                raw[i] = addGStarNoise(
                    raw[i],
                    K,
                    self.camera_params["G_shape"],
                    self.camera_params["Profile-1"]["G_scale"],
                )
                raw[i] = addRowNoise(
                    raw[i], K, self.camera_params["Profile-1"]["R_scale"]
                )
                raw[i] = addQuantNoise(raw[i], q)
                raw[i] *= ratio
            return raw

    def raw2rgb(self, raw, batched=False):
        # 1. -> demosaic
        if not batched:
            raw = self.demosaic(raw)
        else:
            raws = []
            for i in range(raw.shape[0]):
                raws.append(self.demosaic(raw[i]))
            raw = np.stack(raws, axis=0)

        # 2. -> substract black level
        raw -= self.camera_params["black_level"]
        raw = np.clip(
            raw, 0, self.camera_params["max_value"] - self.camera_params["black_level"]
        )

        # 3. -> white balance
        wb = self.wb / self.wb.max()
        raw = raw * wb[:-1]

        # 4. -> gamma
        norm_value = np.power(16383, 1 / 2.2)
        raw = np.power(raw, 1 / 2.2)
        raw /= norm_value

        # 5. -> ispnet
        if not batched:
            input_raw_img = (
                torch.Tensor(raw)
                .permute(2, 0, 1)
                .float()
                .to(self.device)[np.newaxis, ...]
            )
        else:
            input_raw_img = (
                torch.Tensor(raw).permute(0, 3, 1, 2).float().to(self.device)
            )

        with torch.no_grad():
            reconstruct_rgb = self.net(input_raw_img)
            reconstruct_rgb = torch.clamp(reconstruct_rgb, 0, 1)

        pred_rgb = reconstruct_rgb.detach().permute(0, 2, 3, 1)

        if not batched:
            pred_rgb = pred_rgb[0, ...]
        pred_rgb = pred_rgb.cpu().numpy()

        return pred_rgb

    def raw2packedRaw(self, raw, batched=False):
        # 1. -> substract black level
        raw -= self.camera_params["black_level"]
        raw = np.clip(
            raw, 0, self.camera_params["max_value"] - self.camera_params["black_level"]
        )
        raw /= self.camera_params["max_value"]

        # 2. pack
        if not batched:
            im = np.expand_dims(raw, axis=2)
            img_shape = im.shape
            H = img_shape[0]
            W = img_shape[1]

            out = np.concatenate(
                (
                    im[0:H:2, 0:W:2, :],
                    im[0:H:2, 1:W:2, :],
                    im[1:H:2, 1:W:2, :],
                    im[1:H:2, 0:W:2, :],
                ),
                axis=2,
            )
        else:
            im = np.expand_dims(raw, axis=3)
            img_shape = im.shape
            H = img_shape[1]
            W = img_shape[2]

            out = np.concatenate(
                (
                    im[:, 0:H:2, 0:W:2, :],
                    im[:, 0:H:2, 1:W:2, :],
                    im[:, 1:H:2, 1:W:2, :],
                    im[:, 1:H:2, 0:W:2, :],
                ),
                axis=3,
            )
        return out

    def raw2demosaicRaw(self, raw, batched=False):
        # 1. -> demosaic
        if not batched:
            raw = self.demosaic(raw)
        else:
            raws = []
            for i in range(raw.shape[0]):
                raws.append(self.demosaic(raw[i]))
            raw = np.stack(raws, axis=0)

        # 2. -> substract black level
        raw -= self.camera_params["black_level"]
        raw = np.clip(
            raw, 0, self.camera_params["max_value"] - self.camera_params["black_level"]
        )
        raw /= self.camera_params["max_value"]
        return raw