snunlp commited on
Commit
4752196
โ€ข
1 Parent(s): 1cd0014

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +166 -0
README.md ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ko
4
+
5
+ ---
6
+
7
+ ## KoRean based Bert pre-trained (KR-BERT)
8
+
9
+ This is a release of Korean-specific, small-scale BERT models with comparable or better performances developed by Computational Linguistics Lab at Seoul National University, referenced in [KR-BERT: A Small-Scale Korean-Specific Language Model](https://arxiv.org/abs/2008.03979).
10
+
11
+ <br>
12
+
13
+ ### Vocab, Parameters and Data
14
+
15
+ | | Mulitlingual BERT<br>(Google) | KorBERT<br>(ETRI) | KoBERT<br>(SKT) | KR-BERT character | KR-BERT sub-character |
16
+ | -------------: | ---------------------------------------------: | ---------------------: | ----------------------------------: | -------------------------------------: | -------------------------------------: |
17
+ | vocab size | 119,547 | 30,797 | 8,002 | 16,424 | 12,367 |
18
+ | parameter size | 167,356,416 | 109,973,391 | 92,186,880 | 99,265,066 | 96,145,233 |
19
+ | data size | -<br>(The Wikipedia data<br>for 104 languages) | 23GB<br>4.7B morphemes | -<br>(25M sentences,<br>233M words) | 2.47GB<br>20M sentences,<br>233M words | 2.47GB<br>20M sentences,<br>233M words |
20
+
21
+ | Model | Masked LM Accuracy |
22
+ | ------------------------------------------- | ------------------ |
23
+ | KoBERT | 0.750 |
24
+ | KR-BERT character BidirectionalWordPiece | **0.779** |
25
+ | KR-BERT sub-character BidirectionalWordPiece | 0.769 |
26
+
27
+ <br>
28
+
29
+ ### Sub-character
30
+
31
+ Korean text is basically represented with Hangul syllable characters, which can be decomposed into sub-characters, or graphemes. To accommodate such characteristics, we trained a new vocabulary and BERT model on two different representations of a corpus: syllable characters and sub-characters.
32
+
33
+ In case of using our sub-character model, you should preprocess your data with the code below.
34
+
35
+ ```python
36
+ import torch
37
+ from transformers import BertConfig, BertModel, BertForPreTraining, BertTokenizer
38
+ from unicodedata import normalize
39
+
40
+ tokenizer_krbert = BertTokenizer.from_pretrained('/path/to/vocab_file.txt', do_lower_case=False)
41
+
42
+ # convert a string into sub-char
43
+ def to_subchar(string):
44
+ return normalize('NFKD', string)
45
+
46
+ sentence = 'ํ† ํฌ๋‚˜์ด์ € ์˜ˆ์‹œ์ž…๋‹ˆ๋‹ค.'
47
+ print(tokenizer_krbert.tokenize(to_subchar(sentence)))
48
+
49
+ ```
50
+
51
+ ### Tokenization
52
+
53
+ #### BidirectionalWordPiece Tokenizer
54
+
55
+ We use the BidirectionalWordPiece model to reduce search costs while maintaining the possibility of choice. This model applies BPE in both forward and backward directions to obtain two candidates and chooses the one that has a higher frequency.
56
+
57
+
58
+ | | Mulitlingual BERT | KorBERT<br>character | KoBERT | KR-BERT<br>character<br>WordPiece | KR-BERT<br>character<br>BidirectionalWordPiece | KR-BERT<br>sub-character<br>WordPiece | KR-BERT<br>sub-character<br>BidirectionalWordPiece |
59
+ | :-------------------------------------: | :-----------------------: | :-----------------------: | :-----------------------: | :------------------------------: | :-------------------------------------------: | :----------------------------------: | :-----------------------------------------------: |
60
+ | ๋ƒ‰์žฅ๊ณ <br>nayngcangko<br>"refrigerator" | ๋ƒ‰#์žฅ#๊ณ <br>nayng#cang#ko | ๋ƒ‰#์žฅ#๊ณ <br>nayng#cang#ko | ๋ƒ‰#์žฅ#๊ณ <br>nayng#cang#ko | ๋ƒ‰์žฅ๊ณ <br>nayngcangko | ๋ƒ‰์žฅ๊ณ <br>nayngcangko | ๋ƒ‰์žฅ๊ณ <br>nayngcangko | ๋ƒ‰์žฅ๊ณ <br>nayngcangko |
61
+ | ์ถฅ๋‹ค<br>chwupta<br>"cold" | [UNK] | ์ถฅ#๋‹ค<br>chwup#ta | ์ถฅ#๋‹ค<br>chwup#ta | ์ถฅ#๋‹ค<br>chwup#ta | ์ถฅ#๋‹ค<br>chwup#ta | ์ถ”#ใ…‚๋‹ค<br>chwu#pta | ์ถ”#ใ…‚๋‹ค<br>chwu#pta |
62
+ | ๋ฑƒ์‚ฌ๋žŒ<br>paytsalam<br>"seaman" | [UNK] | ๋ฑƒ#์‚ฌ๋žŒ<br>payt#salam | ๋ฑƒ#์‚ฌ๋žŒ<br>payt#salam | ๋ฑƒ#์‚ฌ๋žŒ<br>payt#salam | ๋ฑƒ#์‚ฌ๋žŒ<br>payt#salam | ๋ฐฐ#ใ……#์‚ฌ๋žŒ<br>pay#t#salam | ๋ฐฐ#ใ……#์‚ฌ๋žŒ<br>pay#t#salam |
63
+ | ๋งˆ์ดํฌ<br>maikhu<br>"microphone" | ๋งˆ#์ด#ํฌ<br>ma#i#khu | ๋งˆ์ด#ํฌ<br>mai#khu | ๋งˆ#์ด#ํฌ<br>ma#i#khu | ๋งˆ์ดํฌ<br>maikhu | ๋งˆ์ดํฌ<br>maikhu | ๋งˆ์ดํฌ<br>maikhu | ๋งˆ์ดํฌ<br>maikhu |
64
+
65
+ <br>
66
+
67
+
68
+ ### Models
69
+
70
+ | | TensorFlow | | PyTorch | |
71
+ |:---:|:-------------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|
72
+ | | character | sub-character | character | sub-character |
73
+ | WordPiece <br> tokenizer | [WP char](https://drive.google.com/open?id=1SG5m-3R395VjEEnt0wxWM7SE1j6ndVsX) | [WP subchar](https://drive.google.com/open?id=13oguhQvYD9wsyLwKgU-uLCacQVWA4oHg) | [WP char](https://drive.google.com/file/d/18lsZzx_wonnOezzB5QxqSliA2KL5BF0x/view?usp=sharing) | [WP subchar](https://drive.google.com/open?id=1c1en4AMlCv2k7QapIzqjefnYzNOoh5KZ)
74
+ | Bidirectional <br> WordPiece <br> tokenizer | [BiWP char](https://drive.google.com/open?id=1YhFobehwzdbIxsHHvyFU5okp-HRowRKS) | [BiWP subchar](https://drive.google.com/open?id=12izU0NZXNz9I6IsnknUbencgr7gWHDeM) | [BiWP char](https://drive.google.com/open?id=1C87CCHD9lOQhdgWPkMw_6ZD5M2km7f1p) | [BiWP subchar](https://drive.google.com/file/d/1JvNYFQyb20SWgOiDxZn6h1-n_fjTU25S/view?usp=sharing)
75
+
76
+ <!--
77
+ #### tensorflow
78
+
79
+ * BERT tokenizer, character model ([download](https://drive.google.com/open?id=1SG5m-3R395VjEEnt0wxWM7SE1j6ndVsX))
80
+ * BidirectionalWordPiece tokenizer, character model ([download](https://drive.google.com/open?id=1YhFobehwzdbIxsHHvyFU5okp-HRowRKS))
81
+ * BERT tokenizer, sub-character model ([download](https://drive.google.com/open?id=13oguhQvYD9wsyLwKgU-uLCacQVWA4oHg))
82
+ * BidirectionalWordPiece tokenizer, sub-character model ([download](https://drive.google.com/open?id=12izU0NZXNz9I6IsnknUbencgr7gWHDeM))
83
+
84
+
85
+ #### pytorch
86
+
87
+ * BERT tokenizer, character model ([download](https://drive.google.com/file/d/18lsZzx_wonnOezzB5QxqSliA2KL5BF0x/view?usp=sharing))
88
+ * BidirectionalWordPiece tokenizer, character model ([download](https://drive.google.com/open?id=1C87CCHD9lOQhdgWPkMw_6ZD5M2km7f1p))
89
+ * BERT tokenizer, sub-character model ([download](https://drive.google.com/open?id=1c1en4AMlCv2k7QapIzqjefnYzNOoh5KZ))
90
+ * BidirectionalWordPiece tokenizer, sub-character model ([download](https://drive.google.com/file/d/1JvNYFQyb20SWgOiDxZn6h1-n_fjTU25S/view?usp=sharing))
91
+ -->
92
+
93
+ <br>
94
+
95
+ ### Requirements
96
+
97
+ - transformers == 2.1.1
98
+ - tensorflow < 2.0
99
+
100
+ <br>
101
+
102
+ ## Downstream tasks
103
+
104
+ ### Naver Sentiment Movie Corpus (NSMC)
105
+
106
+ * If you want to use the sub-character version of our models, let the `subchar` argument be `True`.
107
+ * And you can use the original BERT WordPiece tokenizer by entering `bert` for the `tokenizer` argument, and if you use `ranked` you can use our BidirectionalWordPiece tokenizer.
108
+
109
+ * tensorflow: After downloading our pretrained models, put them in a `models` directory in the `krbert_tensorflow` directory.
110
+
111
+ * pytorch: After downloading our pretrained models, put them in a `pretrained` directory in the `krbert_pytorch` directory.
112
+
113
+
114
+ ```sh
115
+ # pytorch
116
+ python3 train.py --subchar {True, False} --tokenizer {bert, ranked}
117
+
118
+ # tensorflow
119
+ python3 run_classifier.py \
120
+ --task_name=NSMC \
121
+ --subchar={True, False} \
122
+ --tokenizer={bert, ranked} \
123
+ --do_train=true \
124
+ --do_eval=true \
125
+ --do_predict=true \
126
+ --do_lower_case=False\
127
+ --max_seq_length=128 \
128
+ --train_batch_size=128 \
129
+ --learning_rate=5e-05 \
130
+ --num_train_epochs=5.0 \
131
+ --output_dir={output_dir}
132
+ ```
133
+
134
+ The pytorch code structure refers to that of https://github.com/aisolab/nlp_implementation .
135
+
136
+ <br>
137
+
138
+ ### NSMC Acc.
139
+
140
+ | | multilingual BERT | KorBERT | KoBERT | KR-BERT character WordPiece | KR-BERT<br>character Bidirectional WordPiece | KR-BERT sub-character WordPiece | KR-BERT<br>sub-character Bidirectional WordPiece |
141
+ |:-----:|-------------------:|----------------:|--------:|----------------------------:|-----------------------------------------:|--------------------------------:|---------------------------------------------:|
142
+ | pytorch | - | **89.84** | 89.01 | 89.34 | **89.38** | 89.20 | 89.34 |
143
+ | tensorflow | 87.08 | 85.94 | n/a | 89.86 | **90.10** | 89.76 | 89.86 |
144
+
145
+
146
+ <br>
147
+
148
+
149
+ ## Citation
150
+
151
+ If you use these models, please cite the following paper:
152
+ ```
153
+ @article{lee2020krbert,
154
+ title={KR-BERT: A Small-Scale Korean-Specific Language Model},
155
+ author={Sangah Lee and Hansol Jang and Yunmee Baik and Suzi Park and Hyopil Shin},
156
+ year={2020},
157
+ journal={ArXiv},
158
+ volume={abs/2008.03979}
159
+ }
160
+ ```
161
+
162
+ <br>
163
+
164
+ ## Contacts
165
+
166