Create pipe_handler.py
Browse files- pipe_handler.py +69 -0
pipe_handler.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any, List
|
2 |
+
from transformers import WhisperForConditionalGeneration, AutoProcessor, WhisperTokenizer, WhisperProcessor, pipeline, WhisperFeatureExtractor
|
3 |
+
import torch
|
4 |
+
import soundfile as sf
|
5 |
+
import io
|
6 |
+
|
7 |
+
|
8 |
+
class EndpointHandler:
|
9 |
+
def __init__(self, path=""):
|
10 |
+
tokenizer = WhisperTokenizer.from_pretrained('openai/whisper-large', language="korean", task='transcribe')
|
11 |
+
model = WhisperForConditionalGeneration.from_pretrained(path)
|
12 |
+
#self.tokenizer = WhisperTokenizer.from_pretrained(path)
|
13 |
+
#self.processor = WhisperProcessor.from_pretrained(path, language="korean", task='transcribe')
|
14 |
+
processor = AutoProcessor.from_pretrained(path)
|
15 |
+
#self.pipe = pipeline("automatic-speech-recognition", model=model, tokenizer=processor.feature_extractor, feature_extractor=processor.feature_extractor)
|
16 |
+
feature_extractor = WhisperFeatureExtractor.from_pretrained('openai/whisper-large')
|
17 |
+
self.pipe = pipeline(task='automatic-speech-recognition', model=path)
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
# Move model to device
|
22 |
+
# self.model.to(device)
|
23 |
+
|
24 |
+
def __call__(self, data: Any) -> List[Dict[str, str]]:
|
25 |
+
print('==========NEW PROCESS=========')
|
26 |
+
transcription = pipeline(task="automatic-speech-recognition", model="vasista22/whisper-kannada-tiny", chunk_length_s=30, device=device)
|
27 |
+
transcription.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="ko", task="transcribe")
|
28 |
+
result = transcription(data['inputs'])
|
29 |
+
|
30 |
+
|
31 |
+
#print(f"{data}")
|
32 |
+
#inputs = data.pop("inputs", data)
|
33 |
+
#print(f'1. inputs: {inputs}')
|
34 |
+
|
35 |
+
|
36 |
+
#inputs, _ = sf.read(io.BytesIO(data['inputs']))
|
37 |
+
#inputs, _ = sf.read(data['inputs'])
|
38 |
+
#print(f'2. inputs: {inputs}')
|
39 |
+
|
40 |
+
# input_features = self.feature_extractor(inputs, sampling_rate=16000).input_features[0]
|
41 |
+
# #print(f'3. input_features: {input_features}')
|
42 |
+
# input_features_tensor = torch.tensor(input_features).unsqueeze(0)
|
43 |
+
# input_ids = self.model.generate(input_features_tensor)
|
44 |
+
# #(f'4. input_ids: {input_ids}')
|
45 |
+
|
46 |
+
# transcription = self.tokenizer.batch_decode(input_ids, skip_special_tokens=True)[0]
|
47 |
+
|
48 |
+
# #inputs, _ = torchaudio.load(inputs, normalize=True)
|
49 |
+
# #input_features = self.processor.feature_extractor(inputs, sampling_rate=16000).input_features[0]
|
50 |
+
|
51 |
+
#input_ids = self.processor.tokenizer(input_features, return_tensors="pt").input_ids
|
52 |
+
#generated_ids = self.model.generate(input_ids)
|
53 |
+
|
54 |
+
# #transcription = self.pipe(inputs, generate_kwargs = {"task":"transcribe", "language":"<|ko|>"})
|
55 |
+
# #transcription = self.pipe(inputs)
|
56 |
+
# #print(input)
|
57 |
+
# inputs = self.processor(inputs, retun_tensors="pt")
|
58 |
+
# #input_features = {key: value.to(device) for key, value in input_features.items()}
|
59 |
+
# input_features = inputs.input_features
|
60 |
+
|
61 |
+
# generated_ids = self.model.generate(input_features)
|
62 |
+
# #generated_ids = self.model.generate(inputs=input_features)
|
63 |
+
# #self.model.generate = partial(self.model.generate, language="korean", task="transcribe")
|
64 |
+
# #generated_ids = self.model.generate(inputs = input_features)
|
65 |
+
|
66 |
+
#transcription = self.processor.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
67 |
+
#transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
68 |
+
|
69 |
+
return result
|