--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-300m_phoneme-mfa_korean results: [] language: - ko metrics: - wer pipeline_tag: automatic-speech-recognition --- # wav2vec2-xls-r-300m_phoneme-mfa_korean Creator & Uploader: Jooyoung Lee (excalibur12@snu.ac.kr) This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on a phonetically balanced native Korean read-speech corpus. ## Training and Evaluation Data Training Data - Data Name: Phonetically Balanced Native Korean Read-speech Corpus - Num. of Samples: 54,000 - Audio Length: 108 Hours Evaluation Data - Data Name: Phonetically Balanced Native Korean Read-speech Corpus - Num. of Samples: 6,000 - Audio Length: 12 Hours ### Training Hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 20 (EarlyStopping: patience: 5 epochs max) - mixed_precision_training: Native AMP ### Evaluation Result Phone Error Rate 3.88% ### Output Examples ![output_examples](./output_examples.png) ### MFA-IPA Phoneset Tables # Vowels ![mfa_ipa_chart_vowels](./mfa_ipa_chart_vowels.png) # Consonants ![mfa_ipa_chart_consonants](./mfa_ipa_chart_consonants.png) ### Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1