--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: wav2vec2-xls-r-phone-mfa_korean results: [] language: - ko metrics: - wer pipeline_tag: automatic-speech-recognition --- # wav2vec2-xls-r-300m_phoneme-mfa_korean This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on a phonetically balanced native Korean read-speech corpus. # Training and Evaluation Data Training Data - Data Name: Phonetically Balanced Native Korean Read-speech Corpus - Num. of Samples: 54,000 (540 speakers) - Audio Length: 108 Hours Evaluation Data - Data Name: Phonetically Balanced Native Korean Read-speech Corpus - Num. of Samples: 6,000 (60 speakers) - Audio Length: 12 Hours # Training Hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 20 (EarlyStopping: patience: 5 epochs max) - mixed_precision_training: Native AMP # Evaluation Result Phone Error Rate 3.88% # Output Examples ![output_examples](./output_examples.png) # MFA-IPA Phoneset Tables ## Vowels ![mfa_ipa_chart_vowels](./mfa_ipa_chart_vowels.png) ## Consonants ![mfa_ipa_chart_consonants](./mfa_ipa_chart_consonants.png) ## Experimental Results Official implementation of the paper (ICPhS 2023) Major error patterns of L2 Korean speech from five different L1s: Chinese (ZH), Vietnamese (VI), Japanese (JP), Thai (TH), English (EN) ![Experimental Results](./ICPHS2023_table2.png) # Framework versions - Transformers 4.21.3 - Pytorch 1.12.1 - Datasets 2.4.0 - Tokenizers 0.12.1