File size: 1,665 Bytes
18f7f3d
 
 
 
 
ff37640
18f7f3d
 
 
 
 
 
ff37640
18f7f3d
7471b79
 
eb4566c
18f7f3d
9bd2de9
21faa72
 
 
 
 
 
 
 
 
 
 
9bd2de9
18f7f3d
 
 
 
 
 
 
 
 
 
 
b8e5928
18f7f3d
 
c5231b4
 
 
18f7f3d
9bd2de9
454f7e7
9bd2de9
40b0d08
 
9bd2de9
 
454f7e7
18f7f3d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-xls-r-300m_phoneme-mfa_korean
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xls-r-300m_phoneme-mfa_korean

Creator & Uploader: Jooyoung Lee ([email protected])

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on a phonetically balanced native Korean read-speech corpus.

## Training and Evaluation Data

Training Data
- Data Name: Phonetically Balanced Native Korean Read-speech Corpus
- Num. of Samples: 54,000
- Audio Length: 108 Hours

Evaluation Data
- Data Name: Phonetically Balanced Native Korean Read-speech Corpus
- Num. of Samples: 6,000
- Audio Length: 12 Hours

### Training Hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 20 (EarlyStopping: patience: 5 epochs max)
- mixed_precision_training: Native AMP

### Evaluation Result

Phone Error Rate 3.88%

### MFA-IPA Phoneset Tables

# Vowels
![mfa_ipa_chart_vowels](./mfa_ipa_chart_vowels.png)

# Consonants
![mfa_ipa_chart_consonants](./mfa_ipa_chart_consonants.png)

### Framework versions

- Transformers 4.21.3
- Pytorch 1.12.1
- Datasets 2.4.0
- Tokenizers 0.12.1