File size: 2,308 Bytes
51a55ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: EleutherAI/polyglot-ko-1.3b
model-index:
- name: pretrain_w-cot_wo-asd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# pretrain_w-cot_wo-asd
This model is a fine-tuned version of [EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2648
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.6934 | 0.1727 | 1000 | 0.2945 |
| 0.2864 | 0.3454 | 2000 | 0.2812 |
| 0.2787 | 0.5181 | 3000 | 0.2762 |
| 0.2739 | 0.6908 | 4000 | 0.2747 |
| 0.2709 | 0.8636 | 5000 | 0.2722 |
| 0.2727 | 1.0363 | 6000 | 0.2704 |
| 0.2694 | 1.2090 | 7000 | 0.2703 |
| 0.2684 | 1.3817 | 8000 | 0.2683 |
| 0.2652 | 1.5544 | 9000 | 0.2678 |
| 0.2641 | 1.7271 | 10000 | 0.2674 |
| 0.2624 | 1.8998 | 11000 | 0.2670 |
| 0.268 | 2.0725 | 12000 | 0.2661 |
| 0.2614 | 2.2453 | 13000 | 0.2661 |
| 0.2622 | 2.4180 | 14000 | 0.2656 |
| 0.2621 | 2.5907 | 15000 | 0.2653 |
| 0.263 | 2.7634 | 16000 | 0.2649 |
| 0.2625 | 2.9361 | 17000 | 0.2648 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |