--- license: apache-2.0 tags: - generated_from_trainer datasets: - piqa metrics: - accuracy base_model: bert-base-uncased model-index: - name: finetuned-bert-piqa results: [] --- # finetuned-bert-piqa This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the piqa dataset. It achieves the following results on the evaluation set: - Loss: 0.6603 - Accuracy: 0.6518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 251 | 0.6751 | 0.6115 | | 0.6628 | 2.0 | 502 | 0.6556 | 0.6534 | | 0.6628 | 3.0 | 753 | 0.6603 | 0.6518 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1