Code to test this model. ``` import torch import time device_name="cuda" if torch.cuda.is_available() else "cpu" device = torch.device(device_name) model_name="skhatri/distilgpt2med" from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) model.to(device) raw_input = "Headache Cough" import sys if len(sys.argv) > 1: raw_input = sys.argv[1] start=time.time() input_ids = tokenizer.encode(raw_input, return_tensors='pt').to(device) output = model.generate(input_ids) response = tokenizer.decode(output[0], skip_special_tokens=True) print(response) end=time.time() print(f'Time taken: {round(end - start, 2)} seconds') ```