Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Code to test this model.
|
2 |
+
|
3 |
+
```
|
4 |
+
import torch
|
5 |
+
import time
|
6 |
+
|
7 |
+
device_name="cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
device = torch.device(device_name)
|
9 |
+
|
10 |
+
model_name="skhatri/distilgpt2med"
|
11 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
+
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
15 |
+
model.to(device)
|
16 |
+
|
17 |
+
raw_input = "Headache Cough"
|
18 |
+
|
19 |
+
import sys
|
20 |
+
if len(sys.argv) > 1:
|
21 |
+
raw_input = sys.argv[1]
|
22 |
+
|
23 |
+
start=time.time()
|
24 |
+
|
25 |
+
input_ids = tokenizer.encode(raw_input, return_tensors='pt').to(device)
|
26 |
+
output = model.generate(input_ids)
|
27 |
+
|
28 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
29 |
+
print(response)
|
30 |
+
end=time.time()
|
31 |
+
print(f'Time taken: {round(end - start, 2)} seconds')
|
32 |
+
```
|