|
""" ChatGLM model configuration """ |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class ChatGLMConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`~ChatGLMModel`]. |
|
It is used to instantiate an ChatGLM model according to the specified arguments, defining the model |
|
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of |
|
the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used |
|
to control the model outputs. Read the documentation from [`PretrainedConfig`] |
|
for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 130528): |
|
Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`~ChatGLMModel`] or |
|
[`~TFChatGLMModel`]. |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the encoder layers and the pooler layer. |
|
num_hidden_layers (`int`, *optional*, defaults to 28): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
inner_hidden_size (`int`, *optional*, defaults to 16384): |
|
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. |
|
max_sequence_length (`int`, *optional*, defaults to 512): |
|
The maximum sequence length that this model might ever be used with. |
|
Typically set this to something large just in case (e.g., 512 or 1024 or 2048). |
|
layernorm_epsilon (`float`, *optional*, defaults to 1e-5): |
|
The epsilon used by the layer normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether the model should return the last key/values attentions (not used by all models). |
|
Example: |
|
|
|
```python |
|
>>> from configuration_chatglm import ChatGLMConfig |
|
>>> from modeling_chatglm import ChatGLMModel |
|
|
|
>>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration |
|
>>> configuration = ChatGLMConfig() |
|
|
|
>>> # Initializing a model from the THUDM/ChatGLM-6B style configuration |
|
>>> model = ChatGLMModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
``` |
|
""" |
|
model_type = "chatglm" |
|
|
|
def __init__( |
|
self, |
|
vocab_size=130528, |
|
hidden_size=4096, |
|
num_layers=28, |
|
num_attention_heads=32, |
|
layernorm_epsilon=1e-5, |
|
use_cache=False, |
|
bos_token_id=130004, |
|
eos_token_id=130005, |
|
pad_token_id=0, |
|
max_sequence_length=2048, |
|
inner_hidden_size=16384, |
|
position_encoding_2d=True, |
|
quantization_bit=0, |
|
quantization_embeddings=False, |
|
**kwargs |
|
): |
|
self.num_layers = num_layers |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.num_attention_heads = num_attention_heads |
|
self.max_sequence_length = max_sequence_length |
|
self.layernorm_epsilon = layernorm_epsilon |
|
self.inner_hidden_size = inner_hidden_size |
|
self.use_cache = use_cache |
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.pad_token_id = pad_token_id |
|
self.position_encoding_2d = position_encoding_2d |
|
self.quantization_bit=quantization_bit |
|
self.quantization_embeddings=quantization_embeddings |
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
**kwargs |
|
) |
|
|