File size: 3,432 Bytes
401561a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
base_model: silmi224/finetune-led-35000
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: led-risalah_data_v17_2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# led-risalah_data_v17_2

This model is a fine-tuned version of [silmi224/finetune-led-35000](https://huggingface.co/silmi224/finetune-led-35000) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6183
- Rouge1: 24.9438
- Rouge2: 12.823
- Rougel: 19.4874
- Rougelsum: 23.9852

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 3.0463        | 1.0   | 20   | 2.6201          | 10.5455 | 3.3808  | 8.0147  | 9.7658    |
| 2.7524        | 2.0   | 40   | 2.3724          | 13.2211 | 4.2659  | 9.4319  | 11.4823   |
| 2.4437        | 3.0   | 60   | 2.1687          | 15.9732 | 4.6109  | 10.6226 | 14.1832   |
| 2.1607        | 4.0   | 80   | 2.0550          | 17.731  | 6.3571  | 10.6519 | 16.6744   |
| 2.0465        | 5.0   | 100  | 1.9641          | 19.3209 | 6.788   | 12.3334 | 17.2773   |
| 1.8932        | 6.0   | 120  | 1.8951          | 20.2099 | 9.1781  | 14.4373 | 18.5711   |
| 1.8485        | 7.0   | 140  | 1.8391          | 17.9081 | 7.2188  | 12.0437 | 16.1709   |
| 1.7211        | 8.0   | 160  | 1.7814          | 20.2991 | 8.2239  | 13.6757 | 18.9692   |
| 1.6461        | 9.0   | 180  | 1.7475          | 25.3547 | 10.5964 | 16.5484 | 23.7821   |
| 1.6109        | 10.0  | 200  | 1.7211          | 22.2062 | 9.3952  | 15.2277 | 21.1163   |
| 1.5818        | 11.0  | 220  | 1.7049          | 22.8022 | 9.2525  | 15.8587 | 21.4785   |
| 1.5194        | 12.0  | 240  | 1.6829          | 23.9497 | 11.1116 | 16.8015 | 22.8818   |
| 1.4541        | 13.0  | 260  | 1.6700          | 23.3403 | 11.4888 | 16.9861 | 22.4228   |
| 1.3816        | 14.0  | 280  | 1.6555          | 25.8179 | 13.2041 | 17.7017 | 24.7336   |
| 1.3908        | 15.0  | 300  | 1.6451          | 25.697  | 13.4504 | 18.41   | 24.7942   |
| 1.364         | 16.0  | 320  | 1.6224          | 25.7576 | 11.9706 | 17.695  | 24.2206   |
| 1.2521        | 17.0  | 340  | 1.6094          | 24.1556 | 12.942  | 18.5932 | 23.2197   |
| 1.2384        | 18.0  | 360  | 1.6041          | 25.1035 | 12.7288 | 18.2081 | 24.4216   |
| 1.2734        | 19.0  | 380  | 1.6075          | 25.482  | 13.4025 | 19.7018 | 25.1256   |
| 1.1228        | 20.0  | 400  | 1.6183          | 24.9438 | 12.823  | 19.4874 | 23.9852   |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1