--- license: cc-by-nc-4.0 language: - ja library_name: transformers tags: - vision - image-captioning --- # Chatvector-llava-v1.5-plus-Houou-v3-7b Model Card # Model Details ※好奇心から生まれたモデルです。精度は保証できませんが、v1.6を用いたものよりは良い気がしています。
chatvector-llava-v1.5-plus-houou-v3-7bは日本語で画像を説明することが可能なVLMです。
[Chat Vector](https://arxiv.org/abs/2310.04799)の手法に影響を受けています。 このモデルはChat Vectorを参考に[llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b)と[houou-instruction-7b-v3](https://huggingface.co/moneyforward/houou-instruction-7b-v3)、[Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) の重みを以下のように加減算することで作成してみました。
``` houou-instruction-7b-v3 + (llava-v1.5-7b - Llama-2-7b-hf) ``` 次のプログラムは引用させていただいたサイトにあったものをベースにしています。以下文献もぜひご覧ください。 ## Uses ```sh git clone https://github.com/haotian-liu/LLaVA.git cd LLaVA pip install -e . ``` ```python import requests import torch import transformers from PIL import Image from transformers.generation.streamers import TextStreamer from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX from llava.conversation import conv_templates, SeparatorStyle from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM from llava.mm_utils import tokenizer_image_token, process_images model_path = "shinyice/chatvector-llava-v1.5-plus-houou-v3-7b" device = "cuda" if torch.cuda.is_available() else "cpu" model = LlavaLlamaForCausalLM.from_pretrained( model_path, device_map=device, low_cpu_mem_usage=True, use_safetensors=True, torch_dtype=torch.float16, ).eval() tokenizer = transformers.AutoTokenizer.from_pretrained( model_path, model_max_length=1024, padding_side="right", use_fast=False, ) model.get_model().vision_tower.load_model() model = model.to(device) eos_token_id_list = [ tokenizer.eos_token_id, tokenizer.bos_token_id, ] image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg" image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB') if not isinstance(image, list): image = [image] image_tensor = process_images(image, model.get_model().vision_tower.image_processor, model.config) image_sizes = [img.size for img in image] if isinstance(image_tensor, list): image_tensor = [img.to(model.device, dtype=torch.float16) for img in image_tensor] else: image_tensor = image_tensor.to(device, dtype=torch.float16) image_sizes_tensor = torch.tensor(image_sizes, dtype=torch.int32, device=device) conv_mode = "v1" conv = conv_templates[conv_mode].copy() prompt = "猫の隣には何がありますか?" inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt conv.append_message(conv.roles[0], inp) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token( prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt' ).unsqueeze(0) if device == "cuda": input_ids = input_ids.to(device) temperature = 0.0 top_p = 1.0 max_new_tokens = 256 with torch.inference_mode(): output = model.generate( inputs=input_ids, images=image_tensor, image_sizes=image_sizes_tensor, do_sample=True if temperature > 0 else False, temperature=temperature, top_p=top_p, max_new_tokens=max_new_tokens, use_cache=True, eos_token_id=eos_token_id_list, ) print(tokenizer.decode(output[0])) ``` ## Bibliography - [Chat VectorでLLaVAを日本語対応させる](https://zenn.dev/toshi_456/articles/0166a6eaa81c7b) - [Chat Vectorを使って日本語LLMをチャットモデルに改造する](https://qiita.com/jovyan/items/ee6affa5ee5bdaada6b4)