--- base_model: meta-llama/Meta-Llama-3-8B-Instruct library_name: peft license: apache-2.0 tags: - llama-factory - lora - generated_from_trainer model-index: - name: sft results: [] datasets: - shileii/Teachers_Exam language: - zh - en pipeline_tag: question-answering --- # sft This model is a fine-tuned version of [/home/Meta-Llama-3-8B-Instruct](https://huggingface.co//home/Meta-Llama-3-8B-Instruct) on the alpaca_zh_demo, the identity and the teachers_exam_local datasets. It achieves the following results on the evaluation set: - Loss: 1.5271 这个模型是[Meta-Llama-3-8B-Instruct](https://huggingface.co/home/Meta-Llama-3-8B-Instruct)在identity和teachers_exam_local数据集上的微调版本。 在评估集上得到如下结果: - Loss: 1.5271 ## Model description This Model is based Meta-Llama3-8B-Instruct finetuning. ## Intended uses & limitations No limit,everyone can use it. 无限制使用,任何人都可以使用。 ## Training and evaluation data Used high qulity datas with Teachers Exam.The data include choice,multi-choice,etc types subjects. 使用高质量的数据与教师考试。数据包括选择题、多项选择题等类型的题目。 #大模型评测 benchmark(mmlu) ``` Average: 66.89 STEM: 57.52 Social Sciences: 76.28 Humanities: 62.32 Other: 73.32 ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 8.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.2507 | 0.1895 | 50 | 1.9127 | | 1.8486 | 0.3790 | 100 | 1.6928 | | 1.7402 | 0.5685 | 150 | 1.6263 | | 1.6577 | 0.7579 | 200 | 1.5895 | | 1.6681 | 0.9474 | 250 | 1.5667 | | 1.5953 | 1.1369 | 300 | 1.5586 | | 1.5308 | 1.3264 | 350 | 1.5557 | | 1.5432 | 1.5159 | 400 | 1.5500 | | 1.5724 | 1.7054 | 450 | 1.5392 | | 1.5135 | 1.8948 | 500 | 1.5271 | | 1.4324 | 2.0843 | 550 | 1.5466 | | 1.3993 | 2.2738 | 600 | 1.5391 | | 1.4099 | 2.4633 | 650 | 1.5434 | | 1.3764 | 2.6528 | 700 | 1.5400 | | 1.3219 | 2.8423 | 750 | 1.5354 | | 1.3678 | 3.0317 | 800 | 1.5719 | | 1.263 | 3.2212 | 850 | 1.5781 | | 1.228 | 3.4107 | 900 | 1.5834 | | 1.2743 | 3.6002 | 950 | 1.5766 | | 1.2456 | 3.7897 | 1000 | 1.5617 | | 1.2192 | 3.9792 | 1050 | 1.5626 | | 1.0889 | 4.1686 | 1100 | 1.6138 | | 1.156 | 4.3581 | 1150 | 1.6190 | | 1.1111 | 4.5476 | 1200 | 1.6066 | | 1.1222 | 4.7371 | 1250 | 1.6185 | | 1.1102 | 4.9266 | 1300 | 1.6020 | | 1.042 | 5.1161 | 1350 | 1.6649 | | 0.9666 | 5.3055 | 1400 | 1.6663 | | 1.0506 | 5.4950 | 1450 | 1.6709 | | 1.035 | 5.6845 | 1500 | 1.6592 | | 1.0121 | 5.8740 | 1550 | 1.6589 | | 0.968 | 6.0635 | 1600 | 1.7109 | | 0.9422 | 6.2530 | 1650 | 1.7100 | | 0.9571 | 6.4424 | 1700 | 1.7004 | | 0.9546 | 6.6319 | 1750 | 1.6982 | | 0.9965 | 6.8214 | 1800 | 1.7010 | | 0.9433 | 7.0109 | 1850 | 1.7062 | | 0.9193 | 7.2004 | 1900 | 1.7224 | | 0.89 | 7.3899 | 1950 | 1.7259 | | 0.901 | 7.5793 | 2000 | 1.7271 | | 0.9101 | 7.7688 | 2050 | 1.7280 | | 0.9108 | 7.9583 | 2100 | 1.7280 | ### Framework versions - PEFT 0.12.0 - Transformers 4.43.4 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1