shellzero commited on
Commit
1c34a32
1 Parent(s): ac5691e

Update README.md

Browse files

Added more details.

Files changed (1) hide show
  1. README.md +57 -1
README.md CHANGED
@@ -11,4 +11,60 @@ base_model:
11
  library_name: mlx
12
  tags:
13
  - legal
14
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  library_name: mlx
12
  tags:
13
  - legal
14
+ widget:
15
+ - text: |
16
+ <start_of_turn>user
17
+ ## Instructions
18
+ You are a helpful AI assistant.
19
+ ## User
20
+ How to make scrambled eggs?<end_of_turn>
21
+ <start_of_turn>model
22
+ ---
23
+ # shellzero/gemma2-2b-ft-law-data-tag-generation
24
+ This model was converted to MLX format from [`google/gemma-7b-it`]().
25
+ Refer to the [original model card](https://huggingface.co/google/gemma-7b-it) for more details on the model.
26
+
27
+ ```zsh
28
+ pip install mlx-lm
29
+ ```
30
+
31
+ The model was LoRA fine-tuned on the [ymoslem/Law-StackExchange](https://huggingface.co/datasets/ymoslem/Law-StackExchange) and Synthetic data generated from
32
+ GPT-4o and GPT-35-Turbo using the format below, for 1500 steps using `mlx`.
33
+
34
+ This fine tune was one of the best runs with our data and achieved high F1 score on our eval dataset. (Part of the Nvidia hackathon)
35
+
36
+ ```python
37
+ def format_prompt(system_prompt: str, title: str, question: str) -> str:
38
+ "Format the question to the format of the dataset we fine-tuned to."
39
+ return """<bos><start_of_turn>user
40
+ ## Instructions
41
+ {}
42
+ ## User
43
+ TITLE:
44
+ {}
45
+ QUESTION:
46
+ {}<end_of_turn>
47
+ <start_of_turn>model
48
+ """.format(
49
+ system_prompt, title, question
50
+ )
51
+ ```
52
+
53
+ Here's an example of the system_prompt from the dataset:
54
+ ```text
55
+ Read the following title and question about a legal issue and assign the most appropriate tag to it. All tags must be in lowercase, ordered lexicographically and separated by commas.
56
+ ```
57
+ ## Loading the model using `mlx_lm`
58
+
59
+ ```python
60
+ from mlx_lm import generate, load
61
+ model, tokenizer = load("shellzero/gemma2-2b-ft-law-data-tag-generation")
62
+ response = generate(
63
+ model,
64
+ tokenizer,
65
+ prompt=format_prompt(system_prompt, question),
66
+ verbose=True, # Set to True to see the prompt and response
67
+ temp=0.0,
68
+ max_tokens=32,
69
+ )
70
+ ```