PPO playing MountainCarContinuous-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c
fc3c3e2
import numpy as np | |
import torch | |
import torch.nn as nn | |
from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvObs | |
from torch.optim import Adam | |
from torch.utils.tensorboard.writer import SummaryWriter | |
from typing import Optional, Sequence, NamedTuple, TypeVar | |
from shared.algorithm import Algorithm | |
from shared.callbacks.callback import Callback | |
from shared.trajectory import Trajectory | |
from shared.utils import discounted_cumsum | |
from vpg.policy import VPGActorCritic | |
class TrajectoryAccumulator: | |
def __init__(self, num_envs: int, goal_steps: int): | |
self.num_envs = num_envs | |
self.trajectories = [] | |
self.current_trajectories = [Trajectory() for _ in range(num_envs)] | |
self.steps_per_env = int(np.ceil(goal_steps / num_envs)) | |
self.step_idx = 0 | |
self.envs_done: set[int] = set() | |
def step( | |
self, | |
obs: VecEnvObs, | |
action: np.ndarray, | |
reward: np.ndarray, | |
done: np.ndarray, | |
val: np.ndarray, | |
) -> None: | |
assert isinstance(obs, np.ndarray) | |
self.step_idx += 1 | |
for i, trajectory in enumerate(self.current_trajectories): | |
trajectory.add(obs[i], action[i], reward[i], val[i]) | |
if done[i]: | |
# TODO: Eventually take advantage of terminated/truncated | |
# differentiation in later versions of gym. | |
trajectory.terminated = True | |
self.trajectories.append(trajectory) | |
self.current_trajectories[i] = Trajectory() | |
if self.step_idx >= self.steps_per_env: | |
self.envs_done.add(i) | |
def is_done(self) -> bool: | |
return len(self.envs_done) == self.num_envs | |
def n_timesteps(self) -> int: | |
return np.sum([len(t) for t in self.trajectories]).item() | |
class RtgAdvantage(NamedTuple): | |
rewards_to_go: torch.Tensor | |
advantage: torch.Tensor | |
class TrainEpochStats(NamedTuple): | |
pi_loss: float | |
v_loss: float | |
def write_to_tensorboard(self, tb_writer: SummaryWriter, global_step: int) -> None: | |
tb_writer.add_scalars("losses", self._asdict(), global_step=global_step) | |
VanillaPolicyGradientSelf = TypeVar( | |
"VanillaPolicyGradientSelf", bound="VanillaPolicyGradient" | |
) | |
class VanillaPolicyGradient(Algorithm): | |
def __init__( | |
self, | |
policy: VPGActorCritic, | |
env: VecEnv, | |
device: torch.device, | |
tb_writer: SummaryWriter, | |
gamma: float = 0.99, | |
pi_lr: float = 3e-4, | |
val_lr: float = 1e-3, | |
train_v_iters: int = 80, | |
lam: float = 0.97, | |
max_grad_norm: float = 10.0, | |
steps_per_epoch: int = 4_000, | |
) -> None: | |
super().__init__(policy, env, device, tb_writer) | |
self.policy = policy | |
self.gamma = gamma | |
self.lam = lam | |
self.pi_optim = Adam(self.policy.pi.parameters(), lr=pi_lr) | |
self.val_optim = Adam(self.policy.v.parameters(), lr=val_lr) | |
self.max_grad_norm = max_grad_norm | |
self.steps_per_epoch = steps_per_epoch | |
self.train_v_iters = train_v_iters | |
def learn( | |
self: VanillaPolicyGradientSelf, | |
total_timesteps: int, | |
callback: Optional[Callback] = None, | |
) -> VanillaPolicyGradientSelf: | |
self.policy.train(True) | |
obs = self.env.reset() | |
timesteps_elapsed = 0 | |
epoch_cnt = 0 | |
while timesteps_elapsed < total_timesteps: | |
epoch_cnt += 1 | |
accumulator = self._collect_trajectories(obs) | |
epoch_stats = self.train(accumulator.trajectories) | |
epoch_steps = accumulator.n_timesteps() | |
timesteps_elapsed += epoch_steps | |
epoch_stats.write_to_tensorboard( | |
self.tb_writer, global_step=timesteps_elapsed | |
) | |
print( | |
f"Epoch: {epoch_cnt} | " | |
f"Pi Loss: {round(epoch_stats.pi_loss, 2)} | " | |
f"V Loss: {round(epoch_stats.v_loss, 2)} | " | |
f"Total Steps: {timesteps_elapsed}" | |
) | |
if callback: | |
callback.on_step(timesteps_elapsed=epoch_steps) | |
return self | |
def train(self, trajectories: Sequence[Trajectory]) -> TrainEpochStats: | |
obs = torch.as_tensor( | |
np.concatenate([np.array(t.obs) for t in trajectories]), device=self.device | |
) | |
act = torch.as_tensor( | |
np.concatenate([np.array(t.act) for t in trajectories]), device=self.device | |
) | |
rtg, adv = self._compute_rtg_and_advantage(trajectories) | |
pi_loss = self._update_pi(obs, act, adv) | |
v_loss = 0 | |
for _ in range(self.train_v_iters): | |
v_loss = self._update_v(obs, rtg) | |
return TrainEpochStats(pi_loss, v_loss) | |
def _collect_trajectories(self, obs: VecEnvObs) -> TrajectoryAccumulator: | |
accumulator = TrajectoryAccumulator(self.env.num_envs, self.steps_per_epoch) | |
while not accumulator.is_done(): | |
action, value, _, clamped_action = self.policy.step(obs) | |
next_obs, reward, done, _ = self.env.step(clamped_action) | |
accumulator.step(obs, action, reward, done, value) | |
obs = next_obs | |
return accumulator | |
def _compute_rtg_and_advantage( | |
self, trajectories: Sequence[Trajectory] | |
) -> RtgAdvantage: | |
rewards_to_go = [] | |
advantage = [] | |
for traj in trajectories: | |
last_val = 0 if traj.terminated else self.policy.step(traj.obs[-1]).v | |
rew = np.append(np.array(traj.rew), last_val) | |
v = np.append(np.array(traj.v), last_val) | |
rewards_to_go.append(discounted_cumsum(rew, self.gamma)[:-1]) | |
deltas = rew[:-1] + self.gamma * v[1:] - v[:-1] | |
advantage.append(discounted_cumsum(deltas, self.gamma * self.lam)) | |
return RtgAdvantage( | |
torch.as_tensor( | |
np.concatenate(rewards_to_go), dtype=torch.float32, device=self.device | |
), | |
torch.as_tensor( | |
np.concatenate(advantage), dtype=torch.float32, device=self.device | |
), | |
) | |
def _update_pi( | |
self, obs: torch.Tensor, act: torch.Tensor, adv: torch.Tensor | |
) -> float: | |
self.pi_optim.zero_grad() | |
_, logp, _ = self.policy.pi(obs, act) | |
pi_loss = -(logp * adv).mean() | |
pi_loss.backward() | |
nn.utils.clip_grad_norm_(self.policy.pi.parameters(), self.max_grad_norm) | |
self.pi_optim.step() | |
return pi_loss.item() | |
def _update_v(self, obs: torch.Tensor, rtg: torch.Tensor) -> float: | |
self.val_optim.zero_grad() | |
v = self.policy.v(obs) | |
v_loss = ((v - rtg) ** 2).mean() | |
v_loss.backward() | |
nn.utils.clip_grad_norm_(self.policy.v.parameters(), self.max_grad_norm) | |
self.val_optim.step() | |
return v_loss.item() | |