File size: 7,361 Bytes
2c0a903 469be02 2c0a903 3b6713b 469be02 3b6713b 469be02 2c0a903 55df398 2c0a903 8cf5724 2c0a903 0c456f8 53d08d4 0c456f8 53d08d4 0c456f8 53d08d4 0c456f8 53d08d4 ddc36fa a54d833 ddc36fa 3b0f80c a54d833 884d777 ddc36fa 2c0a903 5ea957a 2c0a903 8aa8a6f 9a55c6f 8aa8a6f 469be02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
---
language:
- en
license: llama2
library_name: transformers
tags:
- merge
- mergekit
- lazymergekit
datasets:
- teknium/openhermes
- cognitivecomputations/dolphin
base_model:
- cognitivecomputations/dolphin-llama2-7b
- Tensoic/Llama-2-openhermes
pipeline_tag: text-generation
model-index:
- name: OpenDolphinHermes_Llama2_7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 55.03
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 78.74
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 52.25
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 46.1
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.16
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 20.17
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B
name: Open LLM Leaderboard
---
# OpenDolphinHermes_Llama2_7B
<p align="center">
<img src="https://huggingface.co/sethuiyer/OpenDolphinHermes_Llama2_7B/resolve/main/dolphin_hermes.webp" height="256px" alt="SynthIQ">
</p>
mergekit SLERP of these two models
* [cognitivecomputations/dolphin-llama2-7b](https://huggingface.co/cognitivecomputations/dolphin-llama2-7b)
* [Tensoic/Llama-2-openhermes](https://huggingface.co/Tensoic/Llama-2-openhermes)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: cognitivecomputations/dolphin-llama2-7b
layer_range: [0, 32]
- model: Tensoic/Llama-2-openhermes
layer_range: [0, 32]
merge_method: slerp
base_model: Tensoic/Llama-2-openhermes
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
# Prompt Template (ChatML)
```text
<|im_start|>system
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.
Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content.
Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct.
If you don't know the answer to a question, please don't share false information.
<|im_end|>
<|im_start|>user
{ .Prompt}
<|im_end|>
<|im_start|>assistant
```
# OpenLLM Leaderboard
| T | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
|---|--------------------------------------------|---------|------|-----------|-------|------------|------------|-------|
| 0 | meta-llama/llama-2-13b-hf | 55.69 | 59.39 | 82.13 | 55.77 | 37.38 | 76.64 | 22.82 |
| 1 | sethuiyer/OpenDolphinHermes_Llama2_7B | 54.24 | 55.03| 78.74 | 52.25 | 46.1 | 73.16 | 20.17 |
| 2 | togethercomputer/Llama-2-7B-32K-Instruct | 50.02 | 51.11| 78.51 | 46.11 | 44.86 | 73.88 | 5.69 |
| 3 | togethercomputer/LLaMa-2-7B-32K | 47.07 | 47.53| 76.14 | 43.33 | 39.23 | 71.9 | 4.32 |
## Why?
I wanted a LLaMa2-7B model which is as good as base LLaMa2-13B model.
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "sethuiyer/OpenDolphinHermes_Llama2_7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
Output:
```text
A large language model is a type of artificial intelligence system that has been trained on a massive amount of data, often millions or even billions of words, to learn the patterns and relationships between words and phrases.
These models can then be used to generate new text, understand and translate languages, and perform various natural language processing tasks.
They have become increasingly popular in recent years due to advances in machine learning technology and their ability to achieve high levels of accuracy and performance on natural language processing tasks.
Examples of large language models include GPT-2, BERT, and T5.
```
## Thanks
Thanks to Google Colab for the compute.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__OpenDolphinHermes_Llama2_7B)
| Metric |Value|
|---------------------------------|----:|
|Avg. |54.24|
|AI2 Reasoning Challenge (25-Shot)|55.03|
|HellaSwag (10-Shot) |78.74|
|MMLU (5-Shot) |52.25|
|TruthfulQA (0-shot) |46.10|
|Winogrande (5-shot) |73.16|
|GSM8k (5-shot) |20.17|
|