File size: 7,361 Bytes
2c0a903
469be02
 
 
 
2c0a903
 
 
 
3b6713b
 
 
469be02
 
 
3b6713b
469be02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c0a903
 
55df398
2c0a903
8cf5724
 
 
 
 
 
2c0a903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c456f8
53d08d4
0c456f8
53d08d4
 
 
 
 
 
0c456f8
 
53d08d4
0c456f8
 
53d08d4
 
ddc36fa
 
 
 
a54d833
ddc36fa
 
 
 
3b0f80c
a54d833
884d777
ddc36fa
2c0a903
 
 
 
 
 
 
 
 
5ea957a
2c0a903
 
 
 
 
 
 
 
 
 
 
 
 
8aa8a6f
 
9a55c6f
 
 
 
 
 
 
8aa8a6f
469be02
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
language:
- en
license: llama2
library_name: transformers
tags:
- merge
- mergekit
- lazymergekit
datasets:
- teknium/openhermes
- cognitivecomputations/dolphin
base_model:
- cognitivecomputations/dolphin-llama2-7b
- Tensoic/Llama-2-openhermes
pipeline_tag: text-generation
model-index:
- name: OpenDolphinHermes_Llama2_7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 55.03
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 78.74
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 52.25
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 46.1
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 73.16
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 20.17
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/OpenDolphinHermes_Llama2_7B
      name: Open LLM Leaderboard
---

# OpenDolphinHermes_Llama2_7B


<p align="center">
  <img src="https://huggingface.co/sethuiyer/OpenDolphinHermes_Llama2_7B/resolve/main/dolphin_hermes.webp" height="256px" alt="SynthIQ">
</p>

mergekit SLERP of these two models
* [cognitivecomputations/dolphin-llama2-7b](https://huggingface.co/cognitivecomputations/dolphin-llama2-7b)
* [Tensoic/Llama-2-openhermes](https://huggingface.co/Tensoic/Llama-2-openhermes)

## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: cognitivecomputations/dolphin-llama2-7b
        layer_range: [0, 32]
      - model: Tensoic/Llama-2-openhermes
        layer_range: [0, 32]
merge_method: slerp
base_model: Tensoic/Llama-2-openhermes
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```

# Prompt Template (ChatML)
```text
<|im_start|>system
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.
Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content.
Please ensure that your responses are socially unbiased and positive in nature.

If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct.
If you don't know the answer to a question, please don't share false information.
<|im_end|>
<|im_start|>user
{ .Prompt}
<|im_end|>
<|im_start|>assistant
```

# OpenLLM Leaderboard

| T | Model                                      | Average | ARC  | HellaSwag | MMLU  | TruthfulQA | Winogrande | GSM8K |
|---|--------------------------------------------|---------|------|-----------|-------|------------|------------|-------|
| 0 | meta-llama/llama-2-13b-hf        | 55.69   | 59.39 | 82.13     | 55.77 | 37.38      | 76.64      | 22.82 |
| 1 | sethuiyer/OpenDolphinHermes_Llama2_7B      | 54.24   | 55.03| 78.74     | 52.25 | 46.1       | 73.16      | 20.17 |
| 2 | togethercomputer/Llama-2-7B-32K-Instruct   | 50.02   | 51.11| 78.51     | 46.11 | 44.86      | 73.88      | 5.69  |
| 3 | togethercomputer/LLaMa-2-7B-32K            | 47.07   | 47.53| 76.14     | 43.33 | 39.23      | 71.9       | 4.32  |

## Why?

I wanted a LLaMa2-7B model which is as good as base LLaMa2-13B model.

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "sethuiyer/OpenDolphinHermes_Llama2_7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

Output:
```text
A large language model is a type of artificial intelligence system that has been trained on a massive amount of data, often millions or even billions of words, to learn the patterns and relationships between words and phrases.
These models can then be used to generate new text, understand and translate languages, and perform various natural language processing tasks.
They have become increasingly popular in recent years due to advances in machine learning technology and their ability to achieve high levels of accuracy and performance on natural language processing tasks.
Examples of large language models include GPT-2, BERT, and T5.
```
## Thanks
Thanks to Google Colab for the compute.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__OpenDolphinHermes_Llama2_7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |54.24|
|AI2 Reasoning Challenge (25-Shot)|55.03|
|HellaSwag (10-Shot)              |78.74|
|MMLU (5-Shot)                    |52.25|
|TruthfulQA (0-shot)              |46.10|
|Winogrande (5-shot)              |73.16|
|GSM8k (5-shot)                   |20.17|