File size: 8,303 Bytes
fa1b824
 
 
 
 
 
 
0712ced
 
 
19ebc61
 
 
65bccce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa1b824
 
 
 
718cad4
 
 
 
dc2ad79
 
718cad4
fa1b824
 
 
 
718cad4
 
 
 
 
fa1b824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03effb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab183d7
03effb9
 
ab183d7
03effb9
ab183d7
 
03effb9
fa1b824
 
 
 
 
 
 
 
 
 
847b7e0
 
 
 
 
 
 
 
 
 
 
fa1b824
 
 
 
 
 
 
 
 
 
 
 
847b7e0
 
 
 
 
 
 
 
 
 
 
81e95f6
 
 
65bccce
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
---
license: apache-2.0
tags:
- merge
- mergekit
- segmed/MedMistral-7B-v0.1
- Guilherme34/Samantha-v2
datasets:
- medmcqa
- cognitivecomputations/samantha-data
base_model:
- segmed/MedMistral-7B-v0.1
- Guilherme34/Samantha-v2
model-index:
- name: Dr_Samantha_7b_mistral
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 60.41
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha_7b_mistral
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.65
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha_7b_mistral
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.14
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha_7b_mistral
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 41.37
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha_7b_mistral
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 75.45
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha_7b_mistral
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 31.46
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/Dr_Samantha_7b_mistral
      name: Open LLM Leaderboard
---

# Dr_Samantha_7b_mistral

<p align="center">
  <img src="https://huggingface.co/sethuiyer/Dr_Samantha-7b/resolve/main/dr_samantha_anime_style_reduced_quality.webp" height="256px" alt="SynthIQ">
</p>

Dr. Samantha represents a blend of AI in healthcare, offering a balance between technical medical knowledge and the softer skills of communication and empathy, crucial for patient interaction and care.


This model is a merge of the following models made with mergekit(https://github.com/cg123/mergekit):
* [segmed/MedMistral-7B-v0.1](https://huggingface.co/segmed/MedMistral-7B-v0.1)
* [Guilherme34/Samantha-v2](https://huggingface.co/Guilherme34/Samantha-v2)

Has capabilities of a medical knowledge-focused model (trained on USMLE databases and doctor-patient interactions) with the philosophical, psychological, and relational understanding of the Samantha-7b model. 

As both a medical consultant and personal counselor, Dr.Samantha could effectively support both physical and mental wellbeing - important for whole-person care.


## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: segmed/MedMistral-7B-v0.1
        layer_range: [0, 32]
      - model: Guilherme34/Samantha-v2
        layer_range: [0, 32]
merge_method: slerp
base_model: OpenPipe/mistral-ft-optimized-1218
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```

## OpenLLM Evaluation
Details about that can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__Dr_Samantha_7b_mistral). Overall, with regards to the
subjects related to medical domain, the model's performance is as follows:

| Subject               | Accuracy   |
|-----------------------|------------|
| Clinical Knowledge    | 70.57%     |
| Medical Genetics      | 71.00%     |
| Human Aging           | 69.06%     |
| Human Sexuality       | 75.57%     |
| College Medicine      | 63.01%     |
| Anatomy               | 58.52%     |
| College Biology       | 72.92%     |
| College Medicine      | 63.01%     |
| High School Biology   | 75.48%     |
| Professional Medicine | 65.44%     |
| Nutrition             | 76.79%     |
| High School Psychology | 83.12%    |
| Professional Psychology | 65.35%   |
| Virology              | 53.61%     |
| Average               | **68.82%** |

 Dr. Samantha performs reasonably well on various medical-related subjects, averaging 68.82% overall in medical sciences, biology, and psychology, 
 however it's important to note that medical diagnosis and treatment decisions often require a much higher level of accuracy, reliability, and context awareness.

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "sethuiyer/Dr_Samantha_7b_mistral"
ask_samantha = '''
Symptoms:
Dizziness, headache and nausea.

What is the differnetial diagnosis?
'''

messages = [{"role": "system", "content": '''You are Doctor Samantha, a virtual AI doctor known for your friendly and approachable demeanor, 
combined with a deep expertise in the medical field. You're here to provide professional, empathetic, and knowledgeable advice on health-related inquiries.
You'll also provide differential diagnosis. If you're unsure about any information, Don't share false information.'''},
{"role": "user", "content": f"{ask_samantha}"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
```text
Dizziness, headache and nausea can be caused by a variety of conditions, including:

Vertigo: A sensation of spinning or dizziness that can be caused by problems with the inner ear or brain.
Migraine: A type of headache that can cause throbbing pain, sensitivity to light and sound, and nausea.
Concussion: A type of traumatic brain injury that can cause dizziness, headache, and nausea.
Dehydration: A lack of fluids in the body can cause dizziness, headache, and nausea.
Low blood sugar: A drop in blood sugar levels can cause dizziness, headache, and nausea.

It's important to consult with a healthcare professional for a proper diagnosis and treatment plan.
```

## GGUF Files
GGUF files are available at [s3nh/sethuiyer-Dr_Samantha_7b_mistral-GGUF](https://huggingface.co/s3nh/sethuiyer-Dr_Samantha_7b_mistral-GGUF), thanks to [s3nh](https://huggingface.co/s3nh)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__Dr_Samantha_7b_mistral)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |59.25|
|AI2 Reasoning Challenge (25-Shot)|60.41|
|HellaSwag (10-Shot)              |83.65|
|MMLU (5-Shot)                    |63.14|
|TruthfulQA (0-shot)              |41.37|
|Winogrande (5-shot)              |75.45|
|GSM8k (5-shot)                   |31.46|