from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from transformers import Seq2SeqTrainingArguments, Seq2SeqTrainer, DataCollatorForSeq2Seq import numpy as np import torch from huggingface_hub import login torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True def preprocesser(tokenizer): def preprocess_function(examples): inputs = [f"{examples['question_text'][i]}\n{doc}" for i, doc in enumerate(examples["document_text"])] model_inputs = tokenizer(inputs, truncation=True) labels = tokenizer( text_target=examples["summarization_text"], truncation=True) model_inputs["labels"] = labels["input_ids"] return model_inputs return preprocess_function def training(output='seonglae/resrer', dataset_id='seonglae/resrer-nq', checkpoint='google/pegasus-x-base', token=None): if token is not None: login(token=token) # Load model tokenizer = AutoTokenizer.from_pretrained(checkpoint) # Load dataset dataset = load_dataset(dataset_id, split='train') splited_dataset = dataset.train_test_split(test_size=0.2) tokenized_dataset = splited_dataset.map( preprocesser(tokenizer), batched=True) print(tokenized_dataset["train"][0]) # Train model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint) training_args = Seq2SeqTrainingArguments( output_dir=output, evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=2, optim='adamw_hf', weight_decay=0.01, save_total_limit=3, num_train_epochs=4, push_to_hub=True, ) trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=tokenized_dataset["train"], eval_dataset=tokenized_dataset["test"], tokenizer=tokenizer, data_collator=data_collator, ) trainer.train() # Push if token is not None: tokenizer.push_to_hub(f"{output}", token=token) model.push_to_hub(f"{output}", token=token)