kunato commited on
Commit
15d46a0
1 Parent(s): 75c155b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +145 -0
README.md ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - th
4
+ - en
5
+ pipeline_tag: text-generation
6
+ license: llama3
7
+ ---
8
+ **Llama-3-Typhoon-1.5X-70B-instruct-awq: Thai Large Language Model (Instruct) - AWQ 4bit quantized**
9
+
10
+ **Llama-3-Typhoon-1.5X-70B-instruct** is a 70 billion parameter instruct model designed for Thai 🇹🇭 language. It demonstrates competitive performance with GPT-4-0612, and is optimized for **application** use cases, **Retrieval-Augmented Generation (RAG), constrained generation**, and **reasoning** tasks.
11
+
12
+ Built on Typhoon 1.5 70B (not yet released) and Llama 3 70B Instruct. this model is a result of our experiment on **cross-lingual transfer**. It utilizes the [task-arithmetic model editing](https://arxiv.org/abs/2212.04089) technique, combining the Thai understanding capability of Typhoon with the human alignment performance of Llama 3 Instruct.
13
+
14
+ Remark: To acknowledge Meta's efforts in creating the foundation model and comply with the license, we explicitly include "llama-3" in the model name.
15
+
16
+ ## **Model Description**
17
+
18
+ - **Model type**: A 70B instruct decoder-only model based on the Llama architecture
19
+ - **Requirement**: vllm (https://pypi.org/project/vllm/) 0.3.2 or newer.
20
+ - **Primary Language(s)**: Thai 🇹🇭 and English 🇬🇧
21
+ - **License**: [**Llama 3 Community License**](https://llama.meta.com/llama3/license/)
22
+
23
+ ## **Performance**
24
+
25
+ We evaluated the model's performance in **Language & Knowledge Capabilities** and **Instruction Following Capabilities**.
26
+
27
+ - **Language & Knowledge Capabilities**:
28
+ - Assessed using multiple-choice question-answering datasets such as ThaiExam and MMLU.
29
+ - **Instruction Following Capabilities**:
30
+ - Evaluated based on beta users' feedback, focusing on two factors:
31
+ - **Human Alignment & Reasoning**: Ability to generate responses that are clear and logically structured across multiple steps.
32
+ - Evaluated using [MT-Bench](https://arxiv.org/abs/2306.05685) — How LLMs can align with human needs.
33
+ - **Instruction-following**: Ability to adhere to specified constraints in the instructions.
34
+ - Evaluated using [IFEval](https://arxiv.org/abs/2311.07911) — How LLMs can follow specified constraints, such as formatting and brevity.
35
+ - **Agentic Capabilities**:
36
+ - Evaluated in agent use-cases using [Hugging Face's Transformer Agents](https://huggingface.co/blog/agents) and the associated [benchmark](https://huggingface.co/blog/open-source-llms-as-agents).
37
+
38
+ Remark: We developed the Thai (TH) pairs by translating the original datasets into Thai through machine and human methods.
39
+
40
+ ### ThaiExam
41
+
42
+ | Model | ONET | IC | TGAT | TPAT-1 | A-Level | Average (ThaiExam) | MMLU |
43
+ | --- | --- | --- | --- | --- | --- | --- | --- |
44
+ | Typhoon-1.5X 70B | **0.565** | 0.68 | **0.778** | **0.517** | 0.56 | **0.620** | 0.7945 |
45
+ | gpt-4-0612 | 0.493 | **0.69** | 0.744 | 0.509 | **0.616** | 0.610 | **0.864**** |
46
+ | --- | --- | --- | --- | --- | --- | --- | --- |
47
+ | gpt-4o | 0.62 | 0.63 | 0.789 | 0.56 | 0.623 | 0.644 | 0.887** |
48
+
49
+ ** We report the MMLU score that is reported in [GPT-4o Tech Report](https://openai.com/index/hello-gpt-4o/).
50
+
51
+ ### MT-Bench
52
+
53
+ | Model | MT-Bench Thai | MT-Bench English |
54
+ | --- | --- | --- |
55
+ | Typhoon-1.5X 70B | **8.029** | **8.797** |
56
+ | gpt-4-0612 | 7.801 | 8.671 |
57
+ | --- | --- | --- |
58
+ | gpt-4o | 8.514 | 9.184 |
59
+
60
+ ### IFEval
61
+
62
+ | Model | IFEval Thai | IFEval English |
63
+ | --- | --- | --- |
64
+ | Typhoon-1.5X 70B | **0.645** | **0.810** |
65
+ | gpt-4-0612 | 0.612 | 0.793* |
66
+ | --- | --- | --- |
67
+ | gpt-4o | 0.737 | 0.871 |
68
+
69
+ * We report the number from IFEval paper.
70
+
71
+ ### Agent
72
+
73
+ | Model | GAIA - Thai/English | GSM8K - Thai/English | HotpotQA - Thai/English |
74
+ | --- | --- | --- | --- |
75
+ | gpt-3.5-turbo-0125 | **18.42**/37.5 | 70/80 | 39.56/59 |
76
+ | Typhoon-1.5X 70B | 17.10/36.25 | 80/95 | 52.7/65.83 |
77
+ | gpt-4-0612 | 17.10/**38.75** | **90**/**100** | **56.41**/**76.25** |
78
+ | --- | --- | --- | --- |
79
+ | gpt-4o | 44.73/57.5 | 100/100 | 71.64/76.58 |
80
+
81
+ ## Insight
82
+
83
+ We utilized **model editing** techniques and found that the most critical feature for generating accurate Thai answers is located in the backend (the upper layers of the transformer block). Accordingly, we incorporated a high ratio of Typhoon components in these backend layers to enhance our model’s performance.
84
+
85
+ ## **Usage Example**
86
+
87
+ ```python
88
+ from transformers import AutoTokenizer
89
+ from vllm import LLM, SamplingParams
90
+ quant_path = "scb10x/llama-3-typhoon-v1.5x-70b-instruct-awq"
91
+ llm = LLM(model=quant_path, quantization='awq', max_model_len=8192)
92
+ tokenizer = AutoTokenizer.from_pretrained(quant_path)
93
+
94
+ messages = [
95
+ // messages here
96
+ ]
97
+ prompts = tokenizer.apply_chat_template(
98
+ messages,
99
+ add_generation_prompt=True,
100
+ tokenize=False
101
+ )
102
+ sampling_params = SamplingParams(repetition_penalty=1.05, top_p=0.6, temperature=0.9, max_tokens=1024, stop=['<|eot_id|>', '<|start_header_id|>', '<|end_header_id|>'])
103
+ outputs = llm.generate(prompts, sampling_params=sampling_params)
104
+ print(outputs[0].outputs)
105
+ ```
106
+
107
+ ## **Chat Template**
108
+
109
+ We use the Llama 3 chat template.
110
+
111
+ ```python
112
+ {% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}
113
+ ```
114
+
115
+ ## **Intended Uses & Limitations**
116
+
117
+ This model is experimental and might not be fully evaluated for all use cases. Developers should assess risks in the context of their specific applications.
118
+
119
+ ## **Follow us**
120
+
121
+ [**https://twitter.com/opentyphoon**](https://twitter.com/opentyphoon)
122
+
123
+ ## **Support**
124
+
125
+ [**https://discord.gg/CqyBscMFpg**](https://discord.gg/CqyBscMFpg)
126
+
127
+ ## **SCB 10X Typhoon Team**
128
+
129
+ - Kunat Pipatanakul, Potsawee Manakul, Sittipong Sripaisarnmongkol, Natapong Nitarach, Pathomporn Chokchainant, Kasima Tharnpipitchai
130
+ - If you find Typhoon-1.5X useful for your work, please cite it using:
131
+
132
+ ```
133
+ @article{pipatanakul2023typhoon,
134
+ title={Typhoon: Thai Large Language Models},
135
+ author={Kunat Pipatanakul and Phatrasek Jirabovonvisut and Potsawee Manakul and Sittipong Sripaisarnmongkol and Ruangsak Patomwong and Pathomporn Chokchainant and Kasima Tharnpipitchai},
136
+ year={2023},
137
+ journal={arXiv preprint arXiv:2312.13951},
138
+ url={https://arxiv.org/abs/2312.13951}
139
+ }
140
+ ```
141
+
142
+ ## **Contact Us**
143
+
144
+ - General & Collaboration: [**[email protected]**](mailto:[email protected]), [**[email protected]**](mailto:[email protected])
145
+ - Technical: [**[email protected]**](mailto:[email protected])