Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- th
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
license: llama3
|
7 |
+
---
|
8 |
+
**Llama-3-Typhoon-1.5X-70B-instruct-awq: Thai Large Language Model (Instruct) - AWQ 4bit quantized**
|
9 |
+
|
10 |
+
**Llama-3-Typhoon-1.5X-70B-instruct** is a 70 billion parameter instruct model designed for Thai 🇹🇭 language. It demonstrates competitive performance with GPT-4-0612, and is optimized for **application** use cases, **Retrieval-Augmented Generation (RAG), constrained generation**, and **reasoning** tasks.
|
11 |
+
|
12 |
+
Built on Typhoon 1.5 70B (not yet released) and Llama 3 70B Instruct. this model is a result of our experiment on **cross-lingual transfer**. It utilizes the [task-arithmetic model editing](https://arxiv.org/abs/2212.04089) technique, combining the Thai understanding capability of Typhoon with the human alignment performance of Llama 3 Instruct.
|
13 |
+
|
14 |
+
Remark: To acknowledge Meta's efforts in creating the foundation model and comply with the license, we explicitly include "llama-3" in the model name.
|
15 |
+
|
16 |
+
## **Model Description**
|
17 |
+
|
18 |
+
- **Model type**: A 70B instruct decoder-only model based on the Llama architecture
|
19 |
+
- **Requirement**: vllm (https://pypi.org/project/vllm/) 0.3.2 or newer.
|
20 |
+
- **Primary Language(s)**: Thai 🇹🇭 and English 🇬🇧
|
21 |
+
- **License**: [**Llama 3 Community License**](https://llama.meta.com/llama3/license/)
|
22 |
+
|
23 |
+
## **Performance**
|
24 |
+
|
25 |
+
We evaluated the model's performance in **Language & Knowledge Capabilities** and **Instruction Following Capabilities**.
|
26 |
+
|
27 |
+
- **Language & Knowledge Capabilities**:
|
28 |
+
- Assessed using multiple-choice question-answering datasets such as ThaiExam and MMLU.
|
29 |
+
- **Instruction Following Capabilities**:
|
30 |
+
- Evaluated based on beta users' feedback, focusing on two factors:
|
31 |
+
- **Human Alignment & Reasoning**: Ability to generate responses that are clear and logically structured across multiple steps.
|
32 |
+
- Evaluated using [MT-Bench](https://arxiv.org/abs/2306.05685) — How LLMs can align with human needs.
|
33 |
+
- **Instruction-following**: Ability to adhere to specified constraints in the instructions.
|
34 |
+
- Evaluated using [IFEval](https://arxiv.org/abs/2311.07911) — How LLMs can follow specified constraints, such as formatting and brevity.
|
35 |
+
- **Agentic Capabilities**:
|
36 |
+
- Evaluated in agent use-cases using [Hugging Face's Transformer Agents](https://huggingface.co/blog/agents) and the associated [benchmark](https://huggingface.co/blog/open-source-llms-as-agents).
|
37 |
+
|
38 |
+
Remark: We developed the Thai (TH) pairs by translating the original datasets into Thai through machine and human methods.
|
39 |
+
|
40 |
+
### ThaiExam
|
41 |
+
|
42 |
+
| Model | ONET | IC | TGAT | TPAT-1 | A-Level | Average (ThaiExam) | MMLU |
|
43 |
+
| --- | --- | --- | --- | --- | --- | --- | --- |
|
44 |
+
| Typhoon-1.5X 70B | **0.565** | 0.68 | **0.778** | **0.517** | 0.56 | **0.620** | 0.7945 |
|
45 |
+
| gpt-4-0612 | 0.493 | **0.69** | 0.744 | 0.509 | **0.616** | 0.610 | **0.864**** |
|
46 |
+
| --- | --- | --- | --- | --- | --- | --- | --- |
|
47 |
+
| gpt-4o | 0.62 | 0.63 | 0.789 | 0.56 | 0.623 | 0.644 | 0.887** |
|
48 |
+
|
49 |
+
** We report the MMLU score that is reported in [GPT-4o Tech Report](https://openai.com/index/hello-gpt-4o/).
|
50 |
+
|
51 |
+
### MT-Bench
|
52 |
+
|
53 |
+
| Model | MT-Bench Thai | MT-Bench English |
|
54 |
+
| --- | --- | --- |
|
55 |
+
| Typhoon-1.5X 70B | **8.029** | **8.797** |
|
56 |
+
| gpt-4-0612 | 7.801 | 8.671 |
|
57 |
+
| --- | --- | --- |
|
58 |
+
| gpt-4o | 8.514 | 9.184 |
|
59 |
+
|
60 |
+
### IFEval
|
61 |
+
|
62 |
+
| Model | IFEval Thai | IFEval English |
|
63 |
+
| --- | --- | --- |
|
64 |
+
| Typhoon-1.5X 70B | **0.645** | **0.810** |
|
65 |
+
| gpt-4-0612 | 0.612 | 0.793* |
|
66 |
+
| --- | --- | --- |
|
67 |
+
| gpt-4o | 0.737 | 0.871 |
|
68 |
+
|
69 |
+
* We report the number from IFEval paper.
|
70 |
+
|
71 |
+
### Agent
|
72 |
+
|
73 |
+
| Model | GAIA - Thai/English | GSM8K - Thai/English | HotpotQA - Thai/English |
|
74 |
+
| --- | --- | --- | --- |
|
75 |
+
| gpt-3.5-turbo-0125 | **18.42**/37.5 | 70/80 | 39.56/59 |
|
76 |
+
| Typhoon-1.5X 70B | 17.10/36.25 | 80/95 | 52.7/65.83 |
|
77 |
+
| gpt-4-0612 | 17.10/**38.75** | **90**/**100** | **56.41**/**76.25** |
|
78 |
+
| --- | --- | --- | --- |
|
79 |
+
| gpt-4o | 44.73/57.5 | 100/100 | 71.64/76.58 |
|
80 |
+
|
81 |
+
## Insight
|
82 |
+
|
83 |
+
We utilized **model editing** techniques and found that the most critical feature for generating accurate Thai answers is located in the backend (the upper layers of the transformer block). Accordingly, we incorporated a high ratio of Typhoon components in these backend layers to enhance our model’s performance.
|
84 |
+
|
85 |
+
## **Usage Example**
|
86 |
+
|
87 |
+
```python
|
88 |
+
from transformers import AutoTokenizer
|
89 |
+
from vllm import LLM, SamplingParams
|
90 |
+
quant_path = "scb10x/llama-3-typhoon-v1.5x-70b-instruct-awq"
|
91 |
+
llm = LLM(model=quant_path, quantization='awq', max_model_len=8192)
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained(quant_path)
|
93 |
+
|
94 |
+
messages = [
|
95 |
+
// messages here
|
96 |
+
]
|
97 |
+
prompts = tokenizer.apply_chat_template(
|
98 |
+
messages,
|
99 |
+
add_generation_prompt=True,
|
100 |
+
tokenize=False
|
101 |
+
)
|
102 |
+
sampling_params = SamplingParams(repetition_penalty=1.05, top_p=0.6, temperature=0.9, max_tokens=1024, stop=['<|eot_id|>', '<|start_header_id|>', '<|end_header_id|>'])
|
103 |
+
outputs = llm.generate(prompts, sampling_params=sampling_params)
|
104 |
+
print(outputs[0].outputs)
|
105 |
+
```
|
106 |
+
|
107 |
+
## **Chat Template**
|
108 |
+
|
109 |
+
We use the Llama 3 chat template.
|
110 |
+
|
111 |
+
```python
|
112 |
+
{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}
|
113 |
+
```
|
114 |
+
|
115 |
+
## **Intended Uses & Limitations**
|
116 |
+
|
117 |
+
This model is experimental and might not be fully evaluated for all use cases. Developers should assess risks in the context of their specific applications.
|
118 |
+
|
119 |
+
## **Follow us**
|
120 |
+
|
121 |
+
[**https://twitter.com/opentyphoon**](https://twitter.com/opentyphoon)
|
122 |
+
|
123 |
+
## **Support**
|
124 |
+
|
125 |
+
[**https://discord.gg/CqyBscMFpg**](https://discord.gg/CqyBscMFpg)
|
126 |
+
|
127 |
+
## **SCB 10X Typhoon Team**
|
128 |
+
|
129 |
+
- Kunat Pipatanakul, Potsawee Manakul, Sittipong Sripaisarnmongkol, Natapong Nitarach, Pathomporn Chokchainant, Kasima Tharnpipitchai
|
130 |
+
- If you find Typhoon-1.5X useful for your work, please cite it using:
|
131 |
+
|
132 |
+
```
|
133 |
+
@article{pipatanakul2023typhoon,
|
134 |
+
title={Typhoon: Thai Large Language Models},
|
135 |
+
author={Kunat Pipatanakul and Phatrasek Jirabovonvisut and Potsawee Manakul and Sittipong Sripaisarnmongkol and Ruangsak Patomwong and Pathomporn Chokchainant and Kasima Tharnpipitchai},
|
136 |
+
year={2023},
|
137 |
+
journal={arXiv preprint arXiv:2312.13951},
|
138 |
+
url={https://arxiv.org/abs/2312.13951}
|
139 |
+
}
|
140 |
+
```
|
141 |
+
|
142 |
+
## **Contact Us**
|
143 |
+
|
144 |
+
- General & Collaboration: [**[email protected]**](mailto:[email protected]), [**[email protected]**](mailto:[email protected])
|
145 |
+
- Technical: [**[email protected]**](mailto:[email protected])
|