Quentin Gallouédec commited on
Commit
c83f32d
1 Parent(s): 00550a2

Stochastic eval

Browse files
ppo-MiniGrid-KeyCorridorS3R1-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0ffdc2022b77a4faefc28ad1c38b6249d2e19fe981aa3f75d6c4cda56ad1abe1
3
  size 4390856
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:934a6e70f3c6910e90e7bf225c2721382f3791345aa8f14bf0fd4707e25d6a83
3
  size 4390856
ppo-MiniGrid-KeyCorridorS3R1-v0/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd3cf494040>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd3cf4940d0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd3cf494160>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd3cf4941f0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fd3cf494280>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fd3cf494310>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd3cf4943a0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd3cf494430>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fd3cf4944c0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd3cf494550>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd3cf4945e0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd3cf494670>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7fd3cf495140>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2391414040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23914140d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2391414160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23914141f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2391414280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2391414310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23914143a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2391414430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f23914144c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2391414550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23914145e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2391414670>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f239140ee00>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a0e1b3fcec0c2249446f5c853c9046dbdaf53815c8fcc82beedde77f062787e0
3
- size 266858
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:105417609e468cf8be85d7117eb2229eed4d0bd520d24b660e20bfd5f12b0104
3
+ size 265940
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 0.9473331000000002, "std_reward": 0.0041633960525032905, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-31T18:23:32.350332"}
 
1
+ {"mean_reward": 0.9469998000000001, "std_reward": 0.004582590245701662, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2023-03-31T20:13:32.514597"}