saraleivam commited on
Commit
0f2147e
1 Parent(s): 92b89b7

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:521
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: Advanced TensorFlow and Keras for AI.
16
+ sentences:
17
+ - Data analyst with SPSS skills.
18
+ - Chef with creative cuisine skills.
19
+ - AI developer with TensorFlow and Keras experience.
20
+ - source_sentence: Curso de gestión de proyectos con Trello y Asana.
21
+ sentences:
22
+ - Desarrollador de videojuegos con experiencia en Unreal Engine
23
+ - Gerente de proyectos con habilidades en Trello y Asana.
24
+ - Ingeniero mecánico con habilidades en diseño de motores.
25
+ - source_sentence: Scientific research and academic writing.
26
+ sentences:
27
+ - Director de RRHH con habilidades en gestión estratégica y desarrollo organizacional.
28
+ - Chef with Italian cuisine skills.
29
+ - Academic researcher with scientific writing skills.
30
+ - source_sentence: Scientific computing with MATLAB.
31
+ sentences:
32
+ - Chef with creative cuisine skills.
33
+ - Describe the applications of computer vision across different industries. Apply
34
+ image processing and analysis techniques to computer vision problems.. Utilize
35
+ Python, Pillow, and OpenCV for basic image processing and perform image classification
36
+ and object detection.Create an image classifier using Supervised learning techniques.
37
+ - Engineer with MATLAB and numerical analysis skills.
38
+ - source_sentence: Embedded Systems Software Development.
39
+ sentences:
40
+ - Doctor with radiology experience.
41
+ - Software engineer with embedded systems skills.
42
+ - MLOps engineer with pipeline skills.
43
+ ---
44
+
45
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
46
+
47
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the dataset dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
48
+
49
+ ## Model Details
50
+
51
+ ### Model Description
52
+ - **Model Type:** Sentence Transformer
53
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 79f2382ceacceacdf38563d7c5d16b9ff8d725d6 -->
54
+ - **Maximum Sequence Length:** 128 tokens
55
+ - **Output Dimensionality:** 768 tokens
56
+ - **Similarity Function:** Cosine Similarity
57
+ - **Training Dataset:**
58
+ - dataset
59
+ <!-- - **Language:** Unknown -->
60
+ <!-- - **License:** Unknown -->
61
+
62
+ ### Model Sources
63
+
64
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
65
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
66
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
67
+
68
+ ### Full Model Architecture
69
+
70
+ ```
71
+ SentenceTransformer(
72
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
73
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
74
+ )
75
+ ```
76
+
77
+ ## Usage
78
+
79
+ ### Direct Usage (Sentence Transformers)
80
+
81
+ First install the Sentence Transformers library:
82
+
83
+ ```bash
84
+ pip install -U sentence-transformers
85
+ ```
86
+
87
+ Then you can load this model and run inference.
88
+ ```python
89
+ from sentence_transformers import SentenceTransformer
90
+
91
+ # Download from the 🤗 Hub
92
+ model = SentenceTransformer("saraleivam/GURU-trained-final-model")
93
+ # Run inference
94
+ sentences = [
95
+ 'Embedded Systems Software Development.',
96
+ 'Software engineer with embedded systems skills.',
97
+ 'Doctor with radiology experience.',
98
+ ]
99
+ embeddings = model.encode(sentences)
100
+ print(embeddings.shape)
101
+ # [3, 768]
102
+
103
+ # Get the similarity scores for the embeddings
104
+ similarities = model.similarity(embeddings, embeddings)
105
+ print(similarities.shape)
106
+ # [3, 3]
107
+ ```
108
+
109
+ <!--
110
+ ### Direct Usage (Transformers)
111
+
112
+ <details><summary>Click to see the direct usage in Transformers</summary>
113
+
114
+ </details>
115
+ -->
116
+
117
+ <!--
118
+ ### Downstream Usage (Sentence Transformers)
119
+
120
+ You can finetune this model on your own dataset.
121
+
122
+ <details><summary>Click to expand</summary>
123
+
124
+ </details>
125
+ -->
126
+
127
+ <!--
128
+ ### Out-of-Scope Use
129
+
130
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
131
+ -->
132
+
133
+ <!--
134
+ ## Bias, Risks and Limitations
135
+
136
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
137
+ -->
138
+
139
+ <!--
140
+ ### Recommendations
141
+
142
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
143
+ -->
144
+
145
+ ## Training Details
146
+
147
+ ### Training Dataset
148
+
149
+ #### dataset
150
+
151
+ * Dataset: dataset
152
+ * Size: 521 training samples
153
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
154
+ * Approximate statistics based on the first 1000 samples:
155
+ | | anchor | positive | negative |
156
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
157
+ | type | string | string | string |
158
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.08 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 19.69 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.83 tokens</li><li>max: 128 tokens</li></ul> |
159
+ * Samples:
160
+ | anchor | positive | negative |
161
+ |:--------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
162
+ | <code>Advanced physics: quantum theory and relativity.</code> | <code>Physics researcher with quantum theory and relativistic mechanics experience.</code> | <code>Music teacher with composition skills.</code> |
163
+ | <code>Análisis económico y modelos de negocio.</code> | <code> Consultor económico con experiencia en análisis de mercados y estrategias empresariales.</code> | <code> Arquitecto con habilidades en diseño sostenible.</code> |
164
+ | <code>Programación orientada a objetos en Java.</code> | <code>Ingeniero de software con experiencia en desarrollo backend con Java.</code> | <code>Farmacéutico con habilidades en atención farmacéutica.</code> |
165
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
166
+ ```json
167
+ {
168
+ "scale": 20.0,
169
+ "similarity_fct": "cos_sim"
170
+ }
171
+ ```
172
+
173
+ ### Evaluation Dataset
174
+
175
+ #### dataset
176
+
177
+ * Dataset: dataset
178
+ * Size: 131 evaluation samples
179
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
180
+ * Approximate statistics based on the first 1000 samples:
181
+ | | anchor | positive | negative |
182
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
183
+ | type | string | string | string |
184
+ | details | <ul><li>min: 5 tokens</li><li>mean: 16.08 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 17.91 tokens</li><li>max: 115 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 13.28 tokens</li><li>max: 96 tokens</li></ul> |
185
+ * Samples:
186
+ | anchor | positive | negative |
187
+ |:-----------------------------------------------------------------|:---------------------------------------------------------------------------|:------------------------------------------------------------|
188
+ | <code>TensorFlow for deep learning.</code> | <code>AI researcher with TensorFlow and deep learning skills.</code> | <code>Accountant with tax preparation skills.</code> |
189
+ | <code>Desarrollo de videojuegos con Unreal Engine</code> | <code>Desarrollador de videojuegos con experiencia en Unreal Engine</code> | <code>Abogado con experiencia en litigios civiles</code> |
190
+ | <code>Introducción al desarrollo de videojuegos con Unity</code> | <code>Desarrollador de videojuegos con experiencia en Unity y C#</code> | <code>Psicólogo con experiencia en terapia de pareja</code> |
191
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
192
+ ```json
193
+ {
194
+ "scale": 20.0,
195
+ "similarity_fct": "cos_sim"
196
+ }
197
+ ```
198
+
199
+ ### Training Hyperparameters
200
+
201
+ #### All Hyperparameters
202
+ <details><summary>Click to expand</summary>
203
+
204
+ - `overwrite_output_dir`: False
205
+ - `do_predict`: False
206
+ - `eval_strategy`: no
207
+ - `prediction_loss_only`: True
208
+ - `per_device_train_batch_size`: 8
209
+ - `per_device_eval_batch_size`: 8
210
+ - `per_gpu_train_batch_size`: None
211
+ - `per_gpu_eval_batch_size`: None
212
+ - `gradient_accumulation_steps`: 1
213
+ - `eval_accumulation_steps`: None
214
+ - `learning_rate`: 5e-05
215
+ - `weight_decay`: 0.0
216
+ - `adam_beta1`: 0.9
217
+ - `adam_beta2`: 0.999
218
+ - `adam_epsilon`: 1e-08
219
+ - `max_grad_norm`: 1.0
220
+ - `num_train_epochs`: 3.0
221
+ - `max_steps`: -1
222
+ - `lr_scheduler_type`: linear
223
+ - `lr_scheduler_kwargs`: {}
224
+ - `warmup_ratio`: 0.0
225
+ - `warmup_steps`: 0
226
+ - `log_level`: passive
227
+ - `log_level_replica`: warning
228
+ - `log_on_each_node`: True
229
+ - `logging_nan_inf_filter`: True
230
+ - `save_safetensors`: True
231
+ - `save_on_each_node`: False
232
+ - `save_only_model`: False
233
+ - `restore_callback_states_from_checkpoint`: False
234
+ - `no_cuda`: False
235
+ - `use_cpu`: False
236
+ - `use_mps_device`: False
237
+ - `seed`: 42
238
+ - `data_seed`: None
239
+ - `jit_mode_eval`: False
240
+ - `use_ipex`: False
241
+ - `bf16`: False
242
+ - `fp16`: False
243
+ - `fp16_opt_level`: O1
244
+ - `half_precision_backend`: auto
245
+ - `bf16_full_eval`: False
246
+ - `fp16_full_eval`: False
247
+ - `tf32`: None
248
+ - `local_rank`: 0
249
+ - `ddp_backend`: None
250
+ - `tpu_num_cores`: None
251
+ - `tpu_metrics_debug`: False
252
+ - `debug`: []
253
+ - `dataloader_drop_last`: False
254
+ - `dataloader_num_workers`: 0
255
+ - `dataloader_prefetch_factor`: None
256
+ - `past_index`: -1
257
+ - `disable_tqdm`: False
258
+ - `remove_unused_columns`: True
259
+ - `label_names`: None
260
+ - `load_best_model_at_end`: False
261
+ - `ignore_data_skip`: False
262
+ - `fsdp`: []
263
+ - `fsdp_min_num_params`: 0
264
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
265
+ - `fsdp_transformer_layer_cls_to_wrap`: None
266
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
267
+ - `deepspeed`: None
268
+ - `label_smoothing_factor`: 0.0
269
+ - `optim`: adamw_torch
270
+ - `optim_args`: None
271
+ - `adafactor`: False
272
+ - `group_by_length`: False
273
+ - `length_column_name`: length
274
+ - `ddp_find_unused_parameters`: None
275
+ - `ddp_bucket_cap_mb`: None
276
+ - `ddp_broadcast_buffers`: False
277
+ - `dataloader_pin_memory`: True
278
+ - `dataloader_persistent_workers`: False
279
+ - `skip_memory_metrics`: True
280
+ - `use_legacy_prediction_loop`: False
281
+ - `push_to_hub`: False
282
+ - `resume_from_checkpoint`: None
283
+ - `hub_model_id`: None
284
+ - `hub_strategy`: every_save
285
+ - `hub_private_repo`: False
286
+ - `hub_always_push`: False
287
+ - `gradient_checkpointing`: False
288
+ - `gradient_checkpointing_kwargs`: None
289
+ - `include_inputs_for_metrics`: False
290
+ - `eval_do_concat_batches`: True
291
+ - `fp16_backend`: auto
292
+ - `push_to_hub_model_id`: None
293
+ - `push_to_hub_organization`: None
294
+ - `mp_parameters`:
295
+ - `auto_find_batch_size`: False
296
+ - `full_determinism`: False
297
+ - `torchdynamo`: None
298
+ - `ray_scope`: last
299
+ - `ddp_timeout`: 1800
300
+ - `torch_compile`: False
301
+ - `torch_compile_backend`: None
302
+ - `torch_compile_mode`: None
303
+ - `dispatch_batches`: None
304
+ - `split_batches`: None
305
+ - `include_tokens_per_second`: False
306
+ - `include_num_input_tokens_seen`: False
307
+ - `neftune_noise_alpha`: None
308
+ - `optim_target_modules`: None
309
+ - `batch_eval_metrics`: False
310
+ - `batch_sampler`: batch_sampler
311
+ - `multi_dataset_batch_sampler`: proportional
312
+
313
+ </details>
314
+
315
+ ### Training Logs
316
+ | Epoch | Step | dataset loss |
317
+ |:-----:|:----:|:------------:|
318
+ | 3.0 | 198 | 0.0195 |
319
+
320
+
321
+ ### Framework Versions
322
+ - Python: 3.10.12
323
+ - Sentence Transformers: 3.0.1
324
+ - Transformers: 4.41.2
325
+ - PyTorch: 2.3.0+cu121
326
+ - Accelerate: 0.31.0
327
+ - Datasets: 2.20.0
328
+ - Tokenizers: 0.19.1
329
+
330
+ ## Citation
331
+
332
+ ### BibTeX
333
+
334
+ #### Sentence Transformers
335
+ ```bibtex
336
+ @inproceedings{reimers-2019-sentence-bert,
337
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
338
+ author = "Reimers, Nils and Gurevych, Iryna",
339
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
340
+ month = "11",
341
+ year = "2019",
342
+ publisher = "Association for Computational Linguistics",
343
+ url = "https://arxiv.org/abs/1908.10084",
344
+ }
345
+ ```
346
+
347
+ #### MultipleNegativesRankingLoss
348
+ ```bibtex
349
+ @misc{henderson2017efficient,
350
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
351
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
352
+ year={2017},
353
+ eprint={1705.00652},
354
+ archivePrefix={arXiv},
355
+ primaryClass={cs.CL}
356
+ }
357
+ ```
358
+
359
+ <!--
360
+ ## Glossary
361
+
362
+ *Clearly define terms in order to be accessible across audiences.*
363
+ -->
364
+
365
+ <!--
366
+ ## Model Card Authors
367
+
368
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
369
+ -->
370
+
371
+ <!--
372
+ ## Model Card Contact
373
+
374
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
375
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.41.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:982f726d176227cd6392d5d56cb33650b2d17f2f9603e9325bb2e654f49936a7
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 128,
50
+ "model_max_length": 128,
51
+ "pad_to_multiple_of": null,
52
+ "pad_token": "<pad>",
53
+ "pad_token_type_id": 0,
54
+ "padding_side": "right",
55
+ "sep_token": "</s>",
56
+ "stride": 0,
57
+ "tokenizer_class": "XLMRobertaTokenizer",
58
+ "truncation_side": "right",
59
+ "truncation_strategy": "longest_first",
60
+ "unk_token": "<unk>"
61
+ }