File size: 50,878 Bytes
86e31b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
---
base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
datasets:
- sentence-transformers/msmarco-msmarco-distilbert-base-tas-b
- jaimevera1107/similarity-sentences-spanish
- sentence-transformers/all-nli
- sentence-transformers/stsb
- sentence-transformers/quora-duplicates
- sentence-transformers/natural-questions
language:
- en
- es
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:58270
- loss:MultipleNegativesRankingLoss
- loss:CoSENTLoss
- dataset_size:38270
- dataset_size:18270
widget:
- source_sentence: The men are outside.
sentences:
- Two men with backpacks hiking up a trail.
- Two men are leaning out of a window and looking at something to the right of them.
- Two men are trying to plow some dirt, behind a red motorcycle.
- source_sentence: The men are outside.
sentences:
- Two men work on the sewers in the middle of the road as a BMW stops next to them.
- Two women work on a project outdoors.
- Two men work on the sewers in the middle of the road as a BMW stops next to them.
- source_sentence: Fundamentals of quantum computing.
sentences:
- Quantum computing researcher with qubit systems experience.
- Teacher with classroom management skills.
- ' Analista financiero con experiencia en predicción de series temporales y modelos
financieros.'
- source_sentence: Software architecture fundamentals course.
sentences:
- Software architect with system design skills.
- Desarrollador web con habilidades en WordPress
- Nurse with neonatal care experience.
- source_sentence: what creates a bunion
sentences:
- Mitral valve regurgitation means that one of the valves in your heart-the mitral
valve-is letting blood leak backward into the heart.Heart valves work like one-way
gates, helping blood flow in one direction between heart chambers or in and out
of the heart. The mitral valve is on the left side of your heart.It lets blood
flow from the upper to the lower heart chamber. See a picture of mitral valve
regurgitation.When the mitral valve is damaged-for example, by an infection-it
may no longer close tightly.This lets blood leak backward, or regurgitate, into
the upper chamber.t lets blood flow from the upper to the lower heart chamber.
See a picture of mitral valve regurgitation. When the mitral valve is damaged-for
example, by an infection-it may no longer close tightly. This lets blood leak
backward, or regurgitate, into the upper chamber.
- A bunion is a bony bump that forms on the joint at the base of your big toe. It
forms when your big toe pushes against your next toe, forcing the joint of your
big toe to get bigger and stick out. The skin over the bunion might be red and
sore. Wearing tight, narrow shoes might cause bunions or make them worse. Bunions
also can develop as a result of an inherited structural defect, stress on your
foot or a medical condition, such as arthritis. Smaller bunions (bunionettes)
can develop on the joint of your little toe. Nov. 08, 2016.
- 'A bunionette , or tailor''s bunion, is one that develops at the base of the little
toe. When the long bone that connects to the toe (metatarsal ) bends away from
the foot, the little toe bends inward and the joint swells or enlarges. Other
factors that can lead to a bunion include: Loose ligaments in the foot.'
---
# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the dataset, [distilbert](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-tas-b), [spanish](https://huggingface.co/datasets/jaimevera1107/similarity-sentences-spanish), [all-nli-triplet](https://huggingface.co/datasets/sentence-transformers/all-nli) and [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 79f2382ceacceacdf38563d7c5d16b9ff8d725d6 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- dataset
- [distilbert](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-tas-b)
- [spanish](https://huggingface.co/datasets/jaimevera1107/similarity-sentences-spanish)
- [all-nli-triplet](https://huggingface.co/datasets/sentence-transformers/all-nli)
- [stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
- **Languages:** en, es
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("saraleivam/GURU-model2")
# Run inference
sentences = [
'what creates a bunion',
"A bunionette , or tailor's bunion, is one that develops at the base of the little toe. When the long bone that connects to the toe (metatarsal ) bends away from the foot, the little toe bends inward and the joint swells or enlarges. Other factors that can lead to a bunion include: Loose ligaments in the foot.",
'A bunion is a bony bump that forms on the joint at the base of your big toe. It forms when your big toe pushes against your next toe, forcing the joint of your big toe to get bigger and stick out. The skin over the bunion might be red and sore. Wearing tight, narrow shoes might cause bunions or make them worse. Bunions also can develop as a result of an inherited structural defect, stress on your foot or a medical condition, such as arthritis. Smaller bunions (bunionettes) can develop on the joint of your little toe. Nov. 08, 2016.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### dataset
* Dataset: dataset
* Size: 521 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 18.41 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 19.98 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 15.84 tokens</li><li>max: 128 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:-------------------------------------------------------------------|:------------------------------------------------------------------------|:-------------------------------------------------------------|
| <code>Advanced data analysis with R.</code> | <code>Data analyst with R and statistical modeling experience.</code> | <code>Interior designer with space decoration skills.</code> |
| <code>Introduction to quantum machine learning.</code> | <code>AI researcher with quantum machine learning skills.</code> | <code>Pharmacist with pharmaceutical care skills.</code> |
| <code>Fundamentos de diseño de experiencia de usuario (UX).</code> | <code>Diseñador UX con habilidades en investigación de usuarios.</code> | <code>Abogado con habilidades en derecho civil.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### distilbert
* Dataset: [distilbert](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-tas-b) at [e63dd83](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-tas-b/tree/e63dd8397db956cdde78e5e18c0d734585874db2)
* Size: 1,000 training samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 4 tokens</li><li>mean: 9.95 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 18 tokens</li><li>mean: 84.21 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 79.55 tokens</li><li>max: 128 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what are the liberal arts?</code> | <code>liberal arts. 1. the academic course of instruction at a college intended to provide general knowledge and comprising the arts, humanities, natural sciences, and social sciences, as opposed to professional or technical subjects.</code> | <code>liberal arts definition The areas of learning that cultivate general intellectual ability rather than technical or professional skills. Liberal arts is often used as a synonym for humanities, because literature, languages, history, and philosophy are often considered the primary subjects of the liberal arts.</code> |
| <code>what is the mechanism of action of fibrinolytic or thrombolytic drugs?</code> | <code>Baillière's Clinical Haematology. 6 Mechanism of action of the thrombolytic agents. 6 Mechanism of action of the thrombolytic agents JEFFREY I. WEITZ Fibrin formed during the haemostatic, inflammatory or tissue repair process serves a temporary role, and must be degraded to restore normal tissue function and structure.</code> | <code>Thrombolytic drugs such as tPA are often the first line of defense in treating some forms of ischemic stroke. The stroke occurs when fibrin strands in the blood trap blood cells and platelets, forming a clot in an artery to the brain (A).</code> |
| <code>what is normal plat count</code> | <code>78 Followers. A. Platelets are the tiny blood cells that help stop bleeding by binding together to form a clump or plug at sites of injury inside blood vessels. A normal platelet count is between 150,000 and 450,000 platelets per microliter (one-millionth of a liter, abbreviated mcL).The average platelet count is 237,000 per mcL in men and 266,000 per mcL in women.8 Followers. A. Platelets are the tiny blood cells that help stop bleeding by binding together to form a clump or plug at sites of injury inside blood vessels. A normal platelet count is between 150,000 and 450,000 platelets per microliter (one-millionth of a liter, abbreviated mcL).</code> | <code>The normal number of platelets is between 150 and 400 million per millilitre (ml) of blood. Most pregnant women have normal numbers of platelets, but about eight per cent of pregnant women have a slight drop in their platelet count.Your count is below normal if you have between 100 and 150 million platelets per ml of blood.our platelet count will look something like Plat. 160x10.9/L, which means you have a platelet count of 160, which is in the normal range. If your platelet count is low, the blood test should be done again. This will keep track of whether or not your count is dropping.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### spanish
* Dataset: [spanish](https://huggingface.co/datasets/jaimevera1107/similarity-sentences-spanish) at [de18671](https://huggingface.co/datasets/jaimevera1107/similarity-sentences-spanish/tree/de18671fdc278718fab8a505e209e69264079c7a)
* Size: 1,000 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, <code>score</code>, and <code>source</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score | source |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|:-------------------------------------------------------------------------------|
| type | string | string | float | string |
| details | <ul><li>min: 9 tokens</li><li>mean: 27.57 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 27.6 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.51</li><li>max: 1.0</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 4.0 tokens</li><li>max: 4 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 | score | source |
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|:-----------------|
| <code>La comida china tradicional se basa en la filosofía de equilibrio entre el yin y el yang, y el uso de ingredientes frescos.</code> | <code>Los principios de la cocina china se centran en el equilibrio entre los sabores dulce y salado, así como en el uso de productos naturales.</code> | <code>0.4</code> | <code>GPT</code> |
| <code>El neokantismo es una corriente filosófica que busca revitalizar los principios del pensamiento de Immanuel Kant en el contexto moderno.</code> | <code>Los neokantianos buscan actualizar los conceptos de Immanuel Kant para aplicarlos a la filosofía contemporánea.</code> | <code>0.4</code> | <code>GPT</code> |
| <code>La teoría de la paridad del poder adquisitivo sostiene que en el largo plazo, los tipos de cambio entre dos monedas deben ajustarse para reflejar las diferencias en los niveles de precios de los países.</code> | <code>La teoría de la paridad del poder adquisitivo se refiere a la relación entre los niveles de precios de los países y los tipos de cambio entre dos monedas, con el objetivo de mantener el equilibrio a largo plazo.</code> | <code>0.3</code> | <code>GPT</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
#### all-nli-triplet
* Dataset: [all-nli-triplet](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 10,000 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 10.9 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.62 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.76 tokens</li><li>max: 55 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### stsb
* Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 11.08 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 11.05 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
| <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
| <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
| <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Evaluation Datasets
#### dataset
* Dataset: dataset
* Size: 131 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 19.38 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 20.61 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.47 tokens</li><li>max: 122 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:---------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|
| <code>Curso de matemáticas avanzadas para ingeniería</code> | <code>Ingeniero con habilidades en cálculo y álgebra avanzada</code> | <code>Chef con experiencia en repostería</code> |
| <code>Fundamentos de análisis financiero y gestión de riesgos</code> | <code>Analista financiero con habilidades en gestión de riesgos y análisis de inversiones</code> | <code>Chef con experiencia en cocina tradicion</code> |
| <code>Project Management with Agile Methodologies and Scrum.</code> | <code>Project manager with skills in Scrum and agile methodologies.</code> | <code>Mechanical engineer with structural design experience.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### distilbert
* Dataset: [distilbert](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-tas-b) at [e63dd83](https://huggingface.co/datasets/sentence-transformers/msmarco-msmarco-distilbert-base-tas-b/tree/e63dd8397db956cdde78e5e18c0d734585874db2)
* Size: 100 evaluation samples
* Columns: <code>query</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | query | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 9.87 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>min: 28 tokens</li><li>mean: 86.98 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 80.97 tokens</li><li>max: 128 tokens</li></ul> |
* Samples:
| query | positive | negative |
|:-----------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>when was the town of farragut tn incorporated</code> | <code>In January of 1980, residents decided to incorporate by an overwhelming margin. The Town of Farragut was incorporated on January 16, 1980, with the first board of Mayor and Alderman elected on April 1, 1980.</code> | <code>Farragut is a town which straddles both Knox and Loudon counties in Tennessee. It is a suburb of Knoxville. The town's population was 20,676 at the 2010 census. It is included in the Knoxville Metropolitan Area. The town is named in honor of American Civil War Admiral David Farragut, who was born just east of Farragut at Campbell's Station in 1801.</code> |
| <code>how long to roast a chicken</code> | <code>There are two methods for roasting a whole chicken: Regular method: 1 Preheat oven to 350 degrees F (175 degrees C). 2 Roast whole (thawed) chickens for 20 minutes per pound, plus an additional 15 minutes.</code> | <code>1 Roast the chicken at 450 degrees for 20 minutes, then reduce the heat to 400 degrees and continue roasting for about 40 minutes (or until the internal temperature reaches about 175 to 180 degrees F. about 1 hour or a little less).</code> |
| <code>what is a hormone?</code> | <code>What Are Hormones, And What Do They Do? Hormones are special chemical messengers in the body that are created in the endocrine glands. These messengers control most major bodily functions, from simple basic needs like hunger to complex systems like reproduction, and even the emotions and mood. Understanding the major hormones and what they do will help patients take control of their health. Prostaglandins.</code> | <code>Hormone is a chemical substance that is produced in one part of the body (by an endocrine gland) and is carried in the blood to other distant organs or tissues where it acts to modify their structure or function.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### all-nli-triplet
* Dataset: [all-nli-triplet](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 100 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:-------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 7.0 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 20.62 tokens</li><li>max: 78 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 16.0 tokens</li><li>max: 21 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:----------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
| <code>The men are outside.</code> | <code>A man in a green and white "Irish" baseball uniform is lunging forward as though to throw the ball underhand as an older man in umpire's uniform looks on.</code> | <code>Two men are leaning out of a window and looking at something to the right of them.</code> |
| <code>The men are outside.</code> | <code>Three men getting some kind of grass together on a windy day.</code> | <code>Two women work on a project outdoors.</code> |
| <code>The men are outside.</code> | <code>Three men getting some kind of grass together on a windy day.</code> | <code>Two men are leaning out of a window and looking at something to the right of them.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### stsb
* Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 16.55 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.5 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:--------------------------------------------------|:------------------------------------------------------|:------------------|
| <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
| <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
| <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
```
### Training Hyperparameters
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | distilbert loss | all-nli-triplet loss | stsb loss | dataset loss |
|:------:|:----:|:-------------:|:---------------:|:--------------------:|:---------:|:------------:|
| 0.2188 | 500 | 1.9313 | - | - | - | - |
| 0.4376 | 1000 | 1.766 | - | - | - | - |
| 0.6565 | 1500 | 1.6605 | - | - | - | - |
| 0.8753 | 2000 | 1.6541 | - | - | - | - |
| 1.0941 | 2500 | 1.6496 | - | - | - | - |
| 1.3129 | 3000 | 1.4151 | - | - | - | - |
| 1.5317 | 3500 | 1.3921 | - | - | - | - |
| 1.7505 | 4000 | 1.301 | - | - | - | - |
| 1.9694 | 4500 | 1.3356 | - | - | - | - |
| 2.1882 | 5000 | 1.212 | - | - | - | - |
| 2.4070 | 5500 | 1.1476 | - | - | - | - |
| 2.6258 | 6000 | 1.1854 | - | - | - | - |
| 2.8446 | 6500 | 1.0177 | - | - | - | - |
| 3.0 | 6855 | - | 1.3369 | 2.6425 | 4.8295 | 0.0736 |
### Framework Versions
- Python: 3.9.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.1+cpu
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |