--- library_name: peft datasets: - xfordanita/code-summary-java base_model: codellama/CodeLlama-7b-hf --- # Model Card for Model ID This model is a fine-tuned version of **codellama/CodeLlama-7b-hf** on the **QLoRA** by using the method **PEFT** with library.. ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters Training on Free Kaggle GPU 2*(15GB VRAM) with the following params: ```py training_arguments = TrainingArguments( output_dir='./results', num_train_epochs=8, per_device_train_batch_size=4, gradient_accumulation_steps=2, optim="paged_adamw_32bit", save_steps=0, logging_steps=10, learning_rate=2e-4, weight_decay=0.1, # Utilisation d'une valeur plus élevée pour la régularisation L2 fp16=True, max_grad_norm=1.0, # Réduire la taille maximale des gradients pour éviter les explosions de gradients max_steps=-1, warmup_ratio=0.1, # Augmentation du ratio de warmup group_by_length=True, lr_scheduler_type="constant", # Utilisation d'un taux d'apprentissage constant report_to="tensorboard" ) ``` #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]