bol20162021 commited on
Commit
05c2f5f
1 Parent(s): bbb594d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -1
README.md CHANGED
@@ -71,5 +71,5 @@ import torch
71
  from transformers import AutoTokenizer, AutoModelForCausalLM
72
  tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/nova-nsql-Llama-2-70B")
73
  model = AutoModelForCausalLM.from_pretrained("sambanovasystems/nova-nsql-Llama-2-70B", torch_dtype=torch.bfloat16)
74
-
75
  ```
 
71
  from transformers import AutoTokenizer, AutoModelForCausalLM
72
  tokenizer = AutoTokenizer.from_pretrained("sambanovasystems/nova-nsql-Llama-2-70B")
73
  model = AutoModelForCausalLM.from_pretrained("sambanovasystems/nova-nsql-Llama-2-70B", torch_dtype=torch.bfloat16)
74
+ text = "CREATE TABLE stadium (\n stadium_id number,\n location text,\n name text,\n capacity number,\n highest number,\n lowest number,\n average number\n)\n\nCREATE TABLE singer (\n singer_id number,\n name text,\n country text,\n song_name text,\n song_release_year text,\n age number,\n is_male others\n)\n\nCREATE TABLE concert (\n concert_id number,\n concert_name text,\n theme text,\n stadium_id text,\n year text\n)\n\nCREATE TABLE singer_in_concert (\n concert_id number,\n singer_id text\n)\n\n\n-- Using valid SQLite, answer the following questions for the tables provided above.\n\n-- What is the average, minimum, and maximum age of all singers from France?\nSELECT"
75
  ```