import os # os.environ["CUDA_VISIBLE_DEVICES"] = "7" from trainer import Trainer, TrainerArgs from TTS.tts.configs.shared_configs import BaseDatasetConfig , CharactersConfig from TTS.config.shared_configs import BaseAudioConfig from TTS.tts.configs.vits_config import VitsConfig from TTS.tts.datasets import load_tts_samples from TTS.tts.models.vits import Vits, VitsAudioConfig, VitsArgs from TTS.tts.utils.text.tokenizer import TTSTokenizer from TTS.utils.audio import AudioProcessor from TTS.tts.utils.speakers import SpeakerManager #import wandb # Start a wandb run with `sync_tensorboard=True` #if wandb.run is None: #wandb.init(project="persian-tts-vits-grapheme-cv15-fa-male-native-multispeaker-RERUN", group="GPUx8 accel mixed bf16 128x32", sync_tensorboard=True) # output_path = os.path.dirname(os.path.abspath(__file__)) # output_path = output_path + '/notebook_files/runs' # output_path = wandb.run.dir ### PROBABLY better for notebook output_path = "runs" # print("output path is:") # print(output_path) cache_path = "cache" # def mozilla(root_path, meta_file, **kwargs): # pylint: disable=unused-argument # """Normalizes Mozilla meta data files to TTS format""" # txt_file = os.path.join(root_path, meta_file) # items = [] # # speaker_name = "mozilla" # with open(txt_file, "r", encoding="utf-8") as ttf: # for line in ttf: # cols = line.split("|") # wav_file = cols[1].strip() # text = cols[0].strip() # speaker_name = cols[2].strip() # wav_file = os.path.join(root_path, "wavs", wav_file) # items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "root_path": root_path}) # return items dataset_config = BaseDatasetConfig( formatter='common_voice', meta_file_train='validated.tsv', path="/home/bargh1/TTS/datasets" ) character_config=CharactersConfig( characters='ءابتثجحخدذرزسشصضطظعغفقلمنهويِپچژکگیآأؤإئًَُّ', # characters="!¡'(),-.:;¿?ABCDEFGHIJKLMNOPRSTUVWXYZabcdefghijklmnopqrstuvwxyzáçèéêëìíîïñòóôöùúûü«°±µ»$%&‘’‚“`”„", punctuations='!(),-.:;? ̠،؛؟‌<>٫', phonemes='ˈˌːˑpbtdʈɖcɟkɡqɢʔɴŋɲɳnɱmʙrʀⱱɾɽɸβfvθðszʃʒʂʐçʝxɣχʁħʕhɦɬɮʋɹɻjɰlɭʎʟaegiouwyɪʊ̩æɑɔəɚɛɝɨ̃ʉʌʍ0123456789"#$%*+/=ABCDEFGHIJKLMNOPRSTUVWXYZ[]^_{}۱۲۳۴۵۶۷۸۹۰', pad="", eos="", bos="", blank="", characters_class="TTS.tts.models.vits.VitsCharacters", ) # From the coqui multilinguL recipes, will try later vitsArgs = VitsArgs( # use_language_embedding=True, # embedded_language_dim=1, use_speaker_embedding=True, use_sdp=False, ) audio_config = BaseAudioConfig( sample_rate=22050, do_trim_silence=True, min_level_db=-1, # do_sound_norm=True, signal_norm=True, clip_norm=True, symmetric_norm=True, max_norm = 0.9, resample=True, win_length=1024, hop_length=256, num_mels=80, mel_fmin=0, mel_fmax=None ) vits_audio_config = VitsAudioConfig( sample_rate=22050, # do_sound_norm=True, win_length=1024, hop_length=256, num_mels=80, # do_trim_silence=True, #from hugging mel_fmin=0, mel_fmax=None ) config = VitsConfig( model_args=vitsArgs, audio=vits_audio_config, #from huggingface run_name="persian-tts-vits-grapheme-cv15-multispeaker-RERUN", use_speaker_embedding=True, ## For MULTI SPEAKER batch_size=8, batch_group_size=16, eval_batch_size=4, num_loader_workers=16, num_eval_loader_workers=8, run_eval=True, run_eval_steps = 1000, print_eval=True, test_delay_epochs=-1, epochs=1000, save_step=1000, text_cleaner="basic_cleaners", #from MH use_phonemes=False, # phonemizer='persian_mh', #from TTS github # phoneme_language="fa", characters=character_config, #test without as well phoneme_cache_path=os.path.join(cache_path, "phoneme_cache_grapheme_azure-2"), compute_input_seq_cache=True, print_step=25, mixed_precision=False, #from TTS - True causes error "Expected reduction dim" test_sentences=[ ["زین همرهان سست عناصر، دلم گرفت."], ["بیا تا گل برافشانیم و می در ساغر اندازیم."], ["بنی آدم اعضای یک پیکرند, که در آفرینش ز یک گوهرند."], ["سهام زندگی به 10 درصد و سهام بیتکوین گوگل به 33 درصد افزایش یافت."], ["من بودم و آبجی فوتینا، و حالا رپتی پتینا. این شعر یکی از اشعار معروف رو حوضی است که در کوچه بازار تهران زمزمه می شده است." ], ["یه دو دقه هم به حرفم گوش کن، نگو نگوشیدم و نحرفیدی."], [ "داستان با توصیف طوفان‌های شدید آغاز می‌شود؛ طوفان‌هایی که مزرعه‌ها را از بین می‌برد و محصولات را زیر شن دفن می‌کند؛ محصولاتی که زندگی افراد بسیاری به آن وابسته است."] ], output_path=output_path, datasets=[dataset_config] ) # INITIALIZE THE AUDIO PROCESSOR # Audio processor is used for feature extraction and audio I/O. # It mainly serves to the dataloader and the training loggers. ap = AudioProcessor.init_from_config(config) # INITIALIZE THE TOKENIZER # Tokenizer is used to convert text to sequences of token IDs. # config is updated with the default characters if not defined in the config. tokenizer, config = TTSTokenizer.init_from_config(config) # LOAD DATA SAMPLES # Each sample is a list of ```[text, audio_file_path, speaker_name]``` # You can define your custom sample loader returning the list of samples. # Or define your custom formatter and pass it to the `load_tts_samples`. # Check `TTS.tts.datasets.load_tts_samples` for more details. train_samples, eval_samples = load_tts_samples( dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size, ) # init speaker manager for multi-speaker training # it maps speaker-id to speaker-name in the model and data-loader speaker_manager = SpeakerManager() speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name") config.num_speakers = speaker_manager.num_speakers # init model model = Vits(config, ap, tokenizer, speaker_manager=speaker_manager) # init the trainer and 🚀 trainer = Trainer( TrainerArgs(use_accelerate=True), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples, ) trainer.fit()