File size: 12,533 Bytes
7a178b2 67f8d98 7a178b2 8468ef6 7a178b2 67f8d98 7a178b2 8468ef6 7a178b2 9eb50e9 7a178b2 8468ef6 7a178b2 67f8d98 7a178b2 8468ef6 7a178b2 67f8d98 8468ef6 67f8d98 7a178b2 8468ef6 7a178b2 8468ef6 7a178b2 8468ef6 7a178b2 67f8d98 7a178b2 8468ef6 7a178b2 67f8d98 7a178b2 8468ef6 7a178b2 67f8d98 7a178b2 8468ef6 7a178b2 67f8d98 7a178b2 8468ef6 7a178b2 67f8d98 7a178b2 8468ef6 7a178b2 67f8d98 7a178b2 8468ef6 7a178b2 67f8d98 7a178b2 8468ef6 7a178b2 67f8d98 7a178b2 8468ef6 7a178b2 67f8d98 7a178b2 8468ef6 7a178b2 67f8d98 8468ef6 67f8d98 8468ef6 67f8d98 7a178b2 8468ef6 7a178b2 8468ef6 7a178b2 8468ef6 7a178b2 67f8d98 8468ef6 7a178b2 8468ef6 7a178b2 67f8d98 8468ef6 7a178b2 8468ef6 7a178b2 67f8d98 8468ef6 67f8d98 8468ef6 67f8d98 8468ef6 7a178b2 8468ef6 7a178b2 b848cbd 7a178b2 b848cbd 7a178b2 2c32de6 b848cbd 7a178b2 b0f38a1 7a178b2 b848cbd 7a178b2 b848cbd 34aedeb 7a178b2 b848cbd 70226c0 7a178b2 b848cbd 7a178b2 b848cbd 7a178b2 b848cbd 7a178b2 8468ef6 7a178b2 1decc8d 7a178b2 8468ef6 7a178b2 8468ef6 7a178b2 02aae6f 7a178b2 b848cbd 257d697 5f0b2ec b848cbd 2bc0888 7a178b2 b848cbd 7a178b2 b848cbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 |
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
- language
- granite-3.0
model-index:
- name: granite-3.0-2b-instruct
results:
- task:
type: text-generation
dataset:
type: instruction-following
name: IFEval
metrics:
- name: pass@1
type: pass@1
value: 52.27
veriefied: false
- task:
type: text-generation
dataset:
type: instruction-following
name: MT-Bench
metrics:
- name: pass@1
type: pass@1
value: 8.22
veriefied: false
- task:
type: text-generation
dataset:
type: human-exams
name: AGI-Eval
metrics:
- name: pass@1
type: pass@1
value: 40.52
veriefied: false
- task:
type: text-generation
dataset:
type: human-exams
name: MMLU
metrics:
- name: pass@1
type: pass@1
value: 65.82
veriefied: false
- task:
type: text-generation
dataset:
type: human-exams
name: MMLU-Pro
metrics:
- name: pass@1
type: pass@1
value: 34.45
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: OBQA
metrics:
- name: pass@1
type: pass@1
value: 46.6
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: SIQA
metrics:
- name: pass@1
type: pass@1
value: 71.21
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: Hellaswag
metrics:
- name: pass@1
type: pass@1
value: 82.61
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: WinoGrande
metrics:
- name: pass@1
type: pass@1
value: 77.51
veriefied: false
- task:
type: text-generation
dataset:
type: commonsense
name: TruthfulQA
metrics:
- name: pass@1
type: pass@1
value: 60.32
veriefied: false
- task:
type: text-generation
dataset:
type: reading-comprehension
name: BoolQ
metrics:
- name: pass@1
type: pass@1
value: 88.65
veriefied: false
- task:
type: text-generation
dataset:
type: reading-comprehension
name: SQuAD 2.0
metrics:
- name: pass@1
type: pass@1
value: 21.58
veriefied: false
- task:
type: text-generation
dataset:
type: reasoning
name: ARC-C
metrics:
- name: pass@1
type: pass@1
value: 64.16
veriefied: false
- task:
type: text-generation
dataset:
type: reasoning
name: GPQA
metrics:
- name: pass@1
type: pass@1
value: 33.81
veriefied: false
- task:
type: text-generation
dataset:
type: reasoning
name: BBH
metrics:
- name: pass@1
type: pass@1
value: 51.55
veriefied: false
- task:
type: text-generation
dataset:
type: code
name: HumanEvalSynthesis
metrics:
- name: pass@1
type: pass@1
value: 64.63
veriefied: false
- task:
type: text-generation
dataset:
type: code
name: HumanEvalExplain
metrics:
- name: pass@1
type: pass@1
value: 57.16
veriefied: false
- task:
type: text-generation
dataset:
type: code
name: HumanEvalFix
metrics:
- name: pass@1
type: pass@1
value: 65.85
veriefied: false
- task:
type: text-generation
dataset:
type: code
name: MBPP
metrics:
- name: pass@1
type: pass@1
value: 49.6
veriefied: false
- task:
type: text-generation
dataset:
type: math
name: GSM8K
metrics:
- name: pass@1
type: pass@1
value: 68.99
veriefied: false
- task:
type: text-generation
dataset:
type: math
name: MATH
metrics:
- name: pass@1
type: pass@1
value: 30.94
veriefied: false
- task:
type: text-generation
dataset:
type: multilingual
name: PAWS-X (7 langs)
metrics:
- name: pass@1
type: pass@1
value: 64.94
veriefied: false
- task:
type: text-generation
dataset:
type: multilingual
name: MGSM (6 langs)
metrics:
- name: pass@1
type: pass@1
value: 48.2
veriefied: false
base_model:
- ibm-granite/granite-3.0-8b-instruct
---
# Disclaimer and Requirements
This model is a clone of [**ibm-granite/granite-3.0-8b-instruct**](https://huggingface.co/ibm-granite/granite-3.0-8b-instruct) compressed using ZipNN. Compressed losslessly to 67% its original size, ZipNN saved ~6GB in storage and potentially ~9TB in data transfer **monthly**.
### Requirement
In order to use the model, ZipNN is necessary:
```bash
pip install zipnn
```
### Use This Model
```python
# Use a pipeline as a high-level helper
from transformers import pipeline
from zipnn import zipnn_hf
zipnn_hf()
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="royleibov/granite-3.0-8b-instruct-ZipNN-Compressed")
pipe(messages)
```
```python
# Load model directly
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from zipnn import zipnn_hf
zipnn_hf()
model = AutoModelForCausalLM.from_pretrained(
"royleibov/granite-3.0-8b-instruct-ZipNN-Compressed",
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained("royleibov/granite-3.0-8b-instruct-ZipNN-Compressed")
```
### ZipNN
ZipNN also allows you to seemlessly save local disk space in your cache after the model is downloaded.
To compress the cached model, simply run:
```bash
python zipnn_compress_path.py safetensors --model royleibov/granite-3.0-8b-instruct-ZipNN-Compressed --hf_cache
```
The model will be decompressed automatically and safely as long as `zipnn_hf()` is added at the top of the file like in the [example above](#use-this-model).
To decompress manualy, simply run:
```bash
python zipnn_decompress_path.py --model royleibov/granite-3.0-8b-instruct-ZipNN-Compressed --hf_cache
```
<!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd5057674cdb524450093d/1hzxoPwqkBJXshKVVe6_9.png) -->
<!-- ![image/png](granite-3_0-language-models_Group_1.png) -->
# Granite-3.0-8B-Instruct
**Model Summary:**
Granite-3.0-8B-Instruct is a 8B parameter model finetuned from *Granite-3.0-8B-Base* using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging.
- **Developers:** Granite Team, IBM
- **GitHub Repository:** [ibm-granite/granite-3.0-language-models](https://github.com/ibm-granite/granite-3.0-language-models)
- **Website**: [Granite Docs](https://www.ibm.com/granite/docs/)
- **Paper:** [Granite 3.0 Language Models](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf)
- **Release Date**: October 21st, 2024
- **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
**Supported Languages:**
English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 3.0 models for languages beyond these 12 languages.
**Intended use:**
The model is designed to respond to general instructions and can be used to build AI assistants for multiple domains, including business applications.
*Capabilities*
* Summarization
* Text classification
* Text extraction
* Question-answering
* Retrieval Augmented Generation (RAG)
* Code related tasks
* Function-calling tasks
* Multilingual dialog use cases
**Generation:**
This is a simple example of how to use Granite-3.0-8B-Instruct model.
Install the following libraries:
```shell
pip install torch torchvision torchaudio
pip install accelerate
pip install transformers
pip install zipnn
```
Then, copy the snippet from the section that is relevant for your use case.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from zipnn import zipnn_hf
zipnn_hf()
device = "auto"
model_path = "royleibov/granite-3.0-8b-instruct-ZipNN-Compressed"
tokenizer = AutoTokenizer.from_pretrained(model_path)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
model.eval()
# change input text as desired
chat = [
{ "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." },
]
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# tokenize the text
input_tokens = tokenizer(chat, return_tensors="pt").to(device)
# generate output tokens
output = model.generate(**input_tokens,
max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# print output
print(output)
```
**Model Architecture:**
Granite-3.0-8B-Instruct is based on a decoder-only dense transformer architecture. Core components of this architecture are: GQA and RoPE, MLP with SwiGLU, RMSNorm, and shared input/output embeddings.
| Model | 2B Dense | 8B Dense | 1B MoE | 3B MoE |
| :-------- | :--------| :-------- | :------| :------|
| Embedding size | 2048 | **4096** | 1024 | 1536 |
| Number of layers | 40 | **40** | 24 | 32 |
| Attention head size | 64 | **128** | 64 | 64 |
| Number of attention heads | 32 | **32** | 16 | 24 |
| Number of KV heads | 8 | **8** | 8 | 8 |
| MLP hidden size | 8192 | **12800** | 512 | 512 |
| MLP activation | SwiGLU | **SwiGLU** | SwiGLU | SwiGLU |
| Number of Experts | — | **—** | 32 | 40 |
| MoE TopK | — | **—** | 8 | 8 |
| Initialization std | 0.1 | **0.1** | 0.1 | 0.1 |
| Sequence Length | 4096 | **4096** | 4096 | 4096 |
| Position Embedding | RoPE | **RoPE** | RoPE | RoPE |
| # Paremeters | 2.5B | **8.1B** | 1.3B | 3.3B |
| # Active Parameters | 2.5B | **8.1B** | 400M | 800M |
| # Training tokens | 12T | **12T** | 10T | 10T |
**Training Data:**
Overall, our SFT data is largely comprised of three key sources: (1) publicly available datasets with permissive license, (2) internal synthetic data targeting specific capabilities, and (3) very small amounts of human-curated data. A detailed attribution of datasets can be found in the [Granite Technical Report](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/paper.pdf) and [Accompanying Author List](https://github.com/ibm-granite/granite-3.0-language-models/blob/main/author-ack.pdf).
**Infrastructure:**
We train Granite 3.0 Language Models using IBM's super computing cluster, Blue Vela, which is outfitted with NVIDIA H100 GPUs. This cluster provides a scalable and efficient infrastructure for training our models over thousands of GPUs while minimizing environmental impact by utilizing 100% renewable energy sources.
**Ethical Considerations and Limitations:**
Granite 3.0 Instruct Models are primarily finetuned using instruction-response pairs mostly in English, but also multilingual data covering eleven languages. Although this model can handle multilingual dialog use cases, its performance might not be similar to English tasks. In such case, introducing a small number of examples (few-shot) can help the model in generating more accurate outputs. While this model has been aligned by keeping safety in consideration, the model may in some cases produce inaccurate, biased, or unsafe responses to user prompts. So we urge the community to use this model with proper safety testing and tuning tailored for their specific tasks.
<!-- ## Citation
```
@misc{granite-models,
author = {author 1, author2, ...},
title = {},
journal = {},
volume = {},
year = {2024},
url = {https://arxiv.org/abs/0000.00000},
}
``` --> |