File size: 1,723 Bytes
8a38621 b275607 8a38621 b275607 6a4698c b275607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: creativeml-openrail-m
language:
- en
tags:
- stable-diffusion
- diffusers
- text-to-image
---
# SemiRealMix
The result of many merges aimed at making semi-realistic human images.
I use the following options to get good generation results:
#### Prompt:
delicate, masterpiece, best shadow, (1 girl:1.3), (korean girl:1.2), (from side:1.2), (from below:0.5), (photorealistic:1.5), extremely detailed skin, studio, beige background, warm soft light, low contrast, head tilt
#### Negative prompt:
(worst quality, low quality:1.4), nsfw, nude, (loli, child, infant, baby:1.5), jewely, (hard light:1.5), back light, spot light, hight contrast, (eyelid:1.3), outdoor, monochrome
Sampler: DPM++ SDE Karras
CFG Scale: 7
Steps: 20
Size: 512x768
Denoising strength: 0.5, Hires upscale: 2, Hires upscaler: R-ESRGAN 4x+ Anime6B, Eta: 0.2
Clip skip: 2
Base Model : SD 1.5
VAE: vae-ft-mse-840000-ema-pruned
Use xformers : True
## 🧨 Diffusers
This model can be used just like any other Stable Diffusion model. For more information,
please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX]().
```python
from diffusers import StableDiffusionPipeline
import torch
model_id = "robotjung/SemiRealMix "
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "1girl"
image = pipe(prompt).images[0]
image.save("./output.png")
```
## Examples:
Here are some examples of images generated using this model:
|