File size: 2,033 Bytes
c05db6e
259edf7
 
 
1d7b588
259edf7
 
1d7b588
 
259edf7
 
 
 
 
1d7b588
259edf7
 
 
 
 
 
 
1d7b588
259edf7
1d7b588
c05db6e
 
259edf7
 
c05db6e
259edf7
c05db6e
259edf7
 
 
 
c05db6e
259edf7
c05db6e
259edf7
c05db6e
259edf7
c05db6e
259edf7
c05db6e
259edf7
c05db6e
259edf7
c05db6e
259edf7
c05db6e
259edf7
c05db6e
259edf7
 
 
 
 
 
 
 
 
 
 
 
c05db6e
259edf7
c05db6e
259edf7
 
 
 
 
 
c05db6e
 
259edf7
c05db6e
259edf7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
base_model: facebook/w2v-bert-2.0
datasets:
- common_voice_16_0
license: mit
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: w2v-bert-2.0-mongolian-colab-CV16.0
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: common_voice_16_0
      type: common_voice_16_0
      config: mn
      split: test
      args: mn
    metrics:
    - type: wer
      value: 0.3243419621492278
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-mongolian-colab-CV16.0

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the common_voice_16_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5145
- Wer: 0.3243

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.8274        | 2.3715 | 300  | 0.6386          | 0.5269 |
| 0.3402        | 4.7431 | 600  | 0.5916          | 0.4212 |
| 0.1732        | 7.1146 | 900  | 0.5562          | 0.3816 |
| 0.0731        | 9.4862 | 1200 | 0.5145          | 0.3243 |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1