PEFT
Safetensors
rizla commited on
Commit
287e233
1 Parent(s): 1664ced

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,3 +1,198 @@
1
  ---
2
- license: cc-by-nc-nd-4.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: peft
3
+ base_model: rizla/rizla-17
4
  ---
5
+
6
+ # This is just an earlier checkpoint midway through last 3 epochs to check if qlora 3 epoch finetune was too much
7
+
8
+ ### Model Description
9
+
10
+ <!-- Provide a longer summary of what this model is. -->
11
+
12
+
13
+
14
+ - **Developed by:*raccoons* [More Information Needed]
15
+ - **Funded by [optional]:** [More Information Needed]
16
+ - **Shared by [optional]:** [More Information Needed]
17
+ - **Model type:** [More Information Needed]
18
+ - **Language(s) (NLP):** [More Information Needed]
19
+ - **License:** [More Information Needed]
20
+ - **Finetuned from model [optional]:** [More Information Needed]
21
+
22
+ ### Model Sources [optional]
23
+
24
+ <!-- Provide the basic links for the model. -->
25
+
26
+ - **Repository:** [More Information Needed]
27
+ - **Paper [optional]:** [More Information Needed]
28
+ - **Demo [optional]:** [More Information Needed]
29
+
30
+ ## Uses
31
+
32
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
33
+
34
+ ### Direct Use
35
+
36
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
37
+
38
+ [More Information Needed]
39
+
40
+ ### Downstream Use [optional]
41
+
42
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Out-of-Scope Use
47
+
48
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
49
+
50
+ [More Information Needed]
51
+
52
+ ## Bias, Risks, and Limitations
53
+
54
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ### Recommendations
59
+
60
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
61
+
62
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
63
+
64
+ ## How to Get Started with the Model
65
+
66
+ Use the code below to get started with the model.
67
+
68
+ [More Information Needed]
69
+
70
+ ## Training Details
71
+
72
+ ### Training Data
73
+
74
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
75
+
76
+ [More Information Needed]
77
+
78
+ ### Training Procedure
79
+
80
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
81
+
82
+ #### Preprocessing [optional]
83
+
84
+ [More Information Needed]
85
+
86
+
87
+ #### Training Hyperparameters
88
+
89
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
90
+
91
+ #### Speeds, Sizes, Times [optional]
92
+
93
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
94
+
95
+ [More Information Needed]
96
+
97
+ ## Evaluation
98
+
99
+ <!-- This section describes the evaluation protocols and provides the results. -->
100
+
101
+ ### Testing Data, Factors & Metrics
102
+
103
+ #### Testing Data
104
+
105
+ <!-- This should link to a Dataset Card if possible. -->
106
+
107
+ [More Information Needed]
108
+
109
+ #### Factors
110
+
111
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Metrics
116
+
117
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
118
+
119
+ [More Information Needed]
120
+
121
+ ### Results
122
+
123
+ [More Information Needed]
124
+
125
+ #### Summary
126
+
127
+
128
+
129
+ ## Model Examination [optional]
130
+
131
+ <!-- Relevant interpretability work for the model goes here -->
132
+
133
+ [More Information Needed]
134
+
135
+ ## Environmental Impact
136
+
137
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
138
+
139
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
140
+
141
+ - **Hardware Type:** [More Information Needed]
142
+ - **Hours used:** [More Information Needed]
143
+ - **Cloud Provider:** [More Information Needed]
144
+ - **Compute Region:** [More Information Needed]
145
+ - **Carbon Emitted:** [More Information Needed]
146
+
147
+ ## Technical Specifications [optional]
148
+
149
+ ### Model Architecture and Objective
150
+
151
+ [More Information Needed]
152
+
153
+ ### Compute Infrastructure
154
+
155
+ [More Information Needed]
156
+
157
+ #### Hardware
158
+
159
+ [More Information Needed]
160
+
161
+ #### Software
162
+
163
+ [More Information Needed]
164
+
165
+ ## Citation [optional]
166
+
167
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
168
+
169
+ **BibTeX:**
170
+
171
+ [More Information Needed]
172
+
173
+ **APA:**
174
+
175
+ [More Information Needed]
176
+
177
+ ## Glossary [optional]
178
+
179
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
180
+
181
+ [More Information Needed]
182
+
183
+ ## More Information [optional]
184
+
185
+ [More Information Needed]
186
+
187
+ ## Model Card Authors [optional]
188
+
189
+ [More Information Needed]
190
+
191
+ ## Model Card Contact
192
+
193
+ [More Information Needed]
194
+
195
+
196
+ ### Framework versions
197
+
198
+ - PEFT 0.8.2
adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "rizla/rizla-17",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "w3",
23
+ "q_proj",
24
+ "w1",
25
+ "o_proj",
26
+ "w2",
27
+ "k_proj",
28
+ "v_proj",
29
+ "gate"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_rslora": false
33
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6f5acefee1688f0c4b9df33b673370e92ca748166afaf823a2226de51b85fc8
3
+ size 352844024
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afa8a670de886218fa722d6ba4e7804920be9c158dfb719f60d3468ebebf91ff
3
+ size 1064
trainer_state.json ADDED
@@ -0,0 +1,2361 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9744245524296675,
5
+ "eval_steps": 500,
6
+ "global_step": 390,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 2e-05,
14
+ "loss": 1.3382,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 4e-05,
20
+ "loss": 1.2632,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.02,
25
+ "learning_rate": 6e-05,
26
+ "loss": 1.2406,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.02,
31
+ "learning_rate": 8e-05,
32
+ "loss": 1.2408,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.03,
37
+ "learning_rate": 0.0001,
38
+ "loss": 0.9425,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.03,
43
+ "learning_rate": 0.00012,
44
+ "loss": 0.9388,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.04,
49
+ "learning_rate": 0.00014,
50
+ "loss": 0.7308,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.04,
55
+ "learning_rate": 0.00016,
56
+ "loss": 0.7467,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.05,
61
+ "learning_rate": 0.00018,
62
+ "loss": 0.5595,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.05,
67
+ "learning_rate": 0.0002,
68
+ "loss": 0.6003,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.06,
73
+ "learning_rate": 0.00019999850743593963,
74
+ "loss": 0.5589,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.06,
79
+ "learning_rate": 0.0001999940297883134,
80
+ "loss": 0.6077,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.07,
85
+ "learning_rate": 0.00019998656719078482,
86
+ "loss": 0.5765,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.07,
91
+ "learning_rate": 0.00019997611986612203,
92
+ "loss": 0.4975,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.08,
97
+ "learning_rate": 0.00019996268812619107,
98
+ "loss": 0.4747,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.08,
103
+ "learning_rate": 0.00019994627237194653,
104
+ "loss": 0.5549,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.09,
109
+ "learning_rate": 0.00019992687309341976,
110
+ "loss": 0.5668,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.09,
115
+ "learning_rate": 0.00019990449086970403,
116
+ "loss": 0.5841,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.1,
121
+ "learning_rate": 0.00019987912636893745,
122
+ "loss": 0.6035,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.1,
127
+ "learning_rate": 0.0001998507803482828,
128
+ "loss": 0.4897,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.11,
133
+ "learning_rate": 0.00019981945365390516,
134
+ "loss": 0.4759,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.11,
139
+ "learning_rate": 0.00019978514722094647,
140
+ "loss": 0.5182,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.12,
145
+ "learning_rate": 0.00019974786207349775,
146
+ "loss": 0.9306,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.12,
151
+ "learning_rate": 0.00019970759932456836,
152
+ "loss": 0.5365,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.13,
157
+ "learning_rate": 0.00019966436017605297,
158
+ "loss": 0.5729,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.13,
163
+ "learning_rate": 0.00019961814591869557,
164
+ "loss": 0.4515,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.14,
169
+ "learning_rate": 0.0001995689579320509,
170
+ "loss": 0.5547,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.14,
175
+ "learning_rate": 0.00019951679768444346,
176
+ "loss": 0.5144,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.15,
181
+ "learning_rate": 0.00019946166673292344,
182
+ "loss": 0.4723,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.15,
187
+ "learning_rate": 0.00019940356672322037,
188
+ "loss": 0.4073,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.16,
193
+ "learning_rate": 0.00019934249938969396,
194
+ "loss": 0.417,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.16,
199
+ "learning_rate": 0.0001992784665552824,
200
+ "loss": 0.4371,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.17,
205
+ "learning_rate": 0.0001992114701314478,
206
+ "loss": 0.4897,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.17,
211
+ "learning_rate": 0.00019914151211811924,
212
+ "loss": 0.5069,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.18,
217
+ "learning_rate": 0.00019906859460363307,
218
+ "loss": 0.511,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.18,
223
+ "learning_rate": 0.00019899271976467055,
224
+ "loss": 0.4006,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.19,
229
+ "learning_rate": 0.00019891388986619277,
230
+ "loss": 0.3999,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.19,
235
+ "learning_rate": 0.00019883210726137326,
236
+ "loss": 0.5261,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.2,
241
+ "learning_rate": 0.00019874737439152748,
242
+ "loss": 0.431,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.2,
247
+ "learning_rate": 0.0001986596937860402,
248
+ "loss": 0.448,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.21,
253
+ "learning_rate": 0.00019856906806228986,
254
+ "loss": 0.4472,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.21,
259
+ "learning_rate": 0.00019847549992557038,
260
+ "loss": 0.4318,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.22,
265
+ "learning_rate": 0.00019837899216901053,
266
+ "loss": 0.4525,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.23,
271
+ "learning_rate": 0.00019827954767349048,
272
+ "loss": 0.4942,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.23,
277
+ "learning_rate": 0.00019817716940755586,
278
+ "loss": 0.4034,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.24,
283
+ "learning_rate": 0.00019807186042732907,
284
+ "loss": 0.472,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.24,
289
+ "learning_rate": 0.00019796362387641806,
290
+ "loss": 0.4244,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.25,
295
+ "learning_rate": 0.0001978524629858226,
296
+ "loss": 0.4703,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.25,
301
+ "learning_rate": 0.00019773838107383767,
302
+ "loss": 0.3931,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.26,
307
+ "learning_rate": 0.00019762138154595446,
308
+ "loss": 0.4041,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.26,
313
+ "learning_rate": 0.00019750146789475885,
314
+ "loss": 0.4527,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.27,
319
+ "learning_rate": 0.00019737864369982693,
320
+ "loss": 0.3539,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.27,
325
+ "learning_rate": 0.00019725291262761828,
326
+ "loss": 0.3967,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.28,
331
+ "learning_rate": 0.0001971242784313665,
332
+ "loss": 0.3604,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.28,
337
+ "learning_rate": 0.00019699274495096712,
338
+ "loss": 0.4196,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.29,
343
+ "learning_rate": 0.0001968583161128631,
344
+ "loss": 0.5119,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.29,
349
+ "learning_rate": 0.0001967209959299275,
350
+ "loss": 0.3844,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.3,
355
+ "learning_rate": 0.00019658078850134366,
356
+ "loss": 0.4271,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.3,
361
+ "learning_rate": 0.000196437698012483,
362
+ "loss": 0.4148,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.31,
367
+ "learning_rate": 0.00019629172873477995,
368
+ "loss": 0.3858,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.31,
373
+ "learning_rate": 0.0001961428850256044,
374
+ "loss": 0.4999,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.32,
379
+ "learning_rate": 0.00019599117132813184,
380
+ "loss": 0.3914,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.32,
385
+ "learning_rate": 0.0001958365921712105,
386
+ "loss": 0.4424,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.33,
391
+ "learning_rate": 0.00019567915216922623,
392
+ "loss": 0.3736,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.33,
397
+ "learning_rate": 0.0001955188560219648,
398
+ "loss": 0.4515,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.34,
403
+ "learning_rate": 0.00019535570851447165,
404
+ "loss": 0.3831,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.34,
409
+ "learning_rate": 0.00019518971451690885,
410
+ "loss": 0.3598,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.35,
415
+ "learning_rate": 0.00019502087898440987,
416
+ "loss": 0.3964,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.35,
421
+ "learning_rate": 0.00019484920695693174,
422
+ "loss": 0.3708,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.36,
427
+ "learning_rate": 0.00019467470355910438,
428
+ "loss": 0.7938,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.36,
433
+ "learning_rate": 0.0001944973740000778,
434
+ "loss": 0.3971,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.37,
439
+ "learning_rate": 0.00019431722357336656,
440
+ "loss": 0.4269,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.37,
445
+ "learning_rate": 0.00019413425765669166,
446
+ "loss": 0.4206,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.38,
451
+ "learning_rate": 0.0001939484817118202,
452
+ "loss": 0.4172,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.38,
457
+ "learning_rate": 0.00019375990128440204,
458
+ "loss": 0.4395,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.39,
463
+ "learning_rate": 0.00019356852200380463,
464
+ "loss": 0.4173,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.39,
469
+ "learning_rate": 0.00019337434958294471,
470
+ "loss": 0.3666,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.4,
475
+ "learning_rate": 0.00019317738981811778,
476
+ "loss": 0.3745,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.4,
481
+ "learning_rate": 0.00019297764858882514,
482
+ "loss": 0.3125,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.41,
487
+ "learning_rate": 0.00019277513185759844,
488
+ "loss": 0.4018,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.41,
493
+ "learning_rate": 0.0001925698456698216,
494
+ "loss": 0.3906,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.42,
499
+ "learning_rate": 0.00019236179615355026,
500
+ "loss": 0.4224,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.42,
505
+ "learning_rate": 0.00019215098951932906,
506
+ "loss": 0.4389,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.43,
511
+ "learning_rate": 0.00019193743206000617,
512
+ "loss": 0.3637,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.43,
517
+ "learning_rate": 0.00019172113015054532,
518
+ "loss": 0.462,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.44,
523
+ "learning_rate": 0.00019150209024783562,
524
+ "loss": 0.346,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.45,
529
+ "learning_rate": 0.00019128031889049883,
530
+ "loss": 0.381,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.45,
535
+ "learning_rate": 0.00019105582269869412,
536
+ "loss": 0.3668,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.46,
541
+ "learning_rate": 0.00019082860837392037,
542
+ "loss": 0.3271,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.46,
547
+ "learning_rate": 0.0001905986826988164,
548
+ "loss": 0.4114,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.47,
553
+ "learning_rate": 0.00019036605253695802,
554
+ "loss": 0.3432,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.47,
559
+ "learning_rate": 0.00019013072483265377,
560
+ "loss": 0.908,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.48,
565
+ "learning_rate": 0.0001898927066107371,
566
+ "loss": 0.4049,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.48,
571
+ "learning_rate": 0.0001896520049763568,
572
+ "loss": 0.3991,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.49,
577
+ "learning_rate": 0.00018940862711476513,
578
+ "loss": 0.3593,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.49,
583
+ "learning_rate": 0.00018916258029110305,
584
+ "loss": 0.4136,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.5,
589
+ "learning_rate": 0.00018891387185018346,
590
+ "loss": 0.3989,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.5,
595
+ "learning_rate": 0.000188662509216272,
596
+ "loss": 0.3329,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.51,
601
+ "learning_rate": 0.00018840849989286532,
602
+ "loss": 0.3622,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.51,
607
+ "learning_rate": 0.00018815185146246716,
608
+ "loss": 0.3152,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.52,
613
+ "learning_rate": 0.00018789257158636203,
614
+ "loss": 0.3909,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.52,
619
+ "learning_rate": 0.00018763066800438636,
620
+ "loss": 0.3701,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.53,
625
+ "learning_rate": 0.00018736614853469768,
626
+ "loss": 0.3669,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.53,
631
+ "learning_rate": 0.00018709902107354103,
632
+ "loss": 0.374,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.54,
637
+ "learning_rate": 0.00018682929359501338,
638
+ "loss": 0.3207,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.54,
643
+ "learning_rate": 0.00018655697415082556,
644
+ "loss": 0.3689,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.55,
649
+ "learning_rate": 0.00018628207087006184,
650
+ "loss": 0.4283,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.55,
655
+ "learning_rate": 0.00018600459195893738,
656
+ "loss": 0.3416,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.56,
661
+ "learning_rate": 0.0001857245457005532,
662
+ "loss": 0.3555,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.56,
667
+ "learning_rate": 0.00018544194045464886,
668
+ "loss": 0.3423,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.57,
673
+ "learning_rate": 0.00018515678465735308,
674
+ "loss": 0.4063,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.57,
679
+ "learning_rate": 0.00018486908682093173,
680
+ "loss": 0.3741,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.58,
685
+ "learning_rate": 0.00018457885553353385,
686
+ "loss": 0.3447,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.58,
691
+ "learning_rate": 0.00018428609945893518,
692
+ "loss": 0.3673,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.59,
697
+ "learning_rate": 0.00018399082733627965,
698
+ "loss": 0.3729,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.59,
703
+ "learning_rate": 0.00018369304797981843,
704
+ "loss": 0.3534,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.6,
709
+ "learning_rate": 0.00018339277027864682,
710
+ "loss": 0.4007,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.6,
715
+ "learning_rate": 0.00018309000319643892,
716
+ "loss": 0.327,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.61,
721
+ "learning_rate": 0.00018278475577118,
722
+ "loss": 0.4156,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.61,
727
+ "learning_rate": 0.00018247703711489686,
728
+ "loss": 0.3576,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.62,
733
+ "learning_rate": 0.0001821668564133856,
734
+ "loss": 0.3178,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.62,
739
+ "learning_rate": 0.0001818542229259376,
740
+ "loss": 0.3592,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.63,
745
+ "learning_rate": 0.00018153914598506297,
746
+ "loss": 0.3595,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.63,
751
+ "learning_rate": 0.00018122163499621207,
752
+ "loss": 0.3384,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.64,
757
+ "learning_rate": 0.00018090169943749476,
758
+ "loss": 0.3765,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.64,
763
+ "learning_rate": 0.00018057934885939734,
764
+ "loss": 0.4108,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.65,
769
+ "learning_rate": 0.00018025459288449755,
770
+ "loss": 0.3517,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.65,
775
+ "learning_rate": 0.00017992744120717735,
776
+ "loss": 0.3711,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.66,
781
+ "learning_rate": 0.00017959790359333347,
782
+ "loss": 0.3513,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.66,
787
+ "learning_rate": 0.00017926598988008582,
788
+ "loss": 0.323,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.67,
793
+ "learning_rate": 0.00017893170997548407,
794
+ "loss": 0.3479,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.68,
799
+ "learning_rate": 0.00017859507385821163,
800
+ "loss": 0.4064,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.68,
805
+ "learning_rate": 0.00017825609157728786,
806
+ "loss": 0.3666,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.69,
811
+ "learning_rate": 0.00017791477325176822,
812
+ "loss": 0.3472,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.69,
817
+ "learning_rate": 0.000177571129070442,
818
+ "loss": 0.42,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.7,
823
+ "learning_rate": 0.00017722516929152826,
824
+ "loss": 0.3668,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.7,
829
+ "learning_rate": 0.00017687690424236967,
830
+ "loss": 0.3206,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.71,
835
+ "learning_rate": 0.00017652634431912417,
836
+ "loss": 0.3175,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.71,
841
+ "learning_rate": 0.00017617349998645456,
842
+ "loss": 0.3447,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.72,
847
+ "learning_rate": 0.0001758183817772163,
848
+ "loss": 0.3392,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.72,
853
+ "learning_rate": 0.00017546100029214285,
854
+ "loss": 0.3558,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.73,
859
+ "learning_rate": 0.00017510136619952946,
860
+ "loss": 0.3608,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.73,
865
+ "learning_rate": 0.00017473949023491455,
866
+ "loss": 0.3169,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.74,
871
+ "learning_rate": 0.0001743753832007593,
872
+ "loss": 0.7764,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.74,
877
+ "learning_rate": 0.0001740090559661252,
878
+ "loss": 0.372,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.75,
883
+ "learning_rate": 0.00017364051946634952,
884
+ "loss": 0.3673,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.75,
889
+ "learning_rate": 0.00017326978470271894,
890
+ "loss": 0.396,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.76,
895
+ "learning_rate": 0.00017289686274214118,
896
+ "loss": 0.3247,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.76,
901
+ "learning_rate": 0.00017252176471681453,
902
+ "loss": 0.3097,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.77,
907
+ "learning_rate": 0.00017214450182389559,
908
+ "loss": 0.3513,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.77,
913
+ "learning_rate": 0.0001717650853251651,
914
+ "loss": 0.3951,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.78,
919
+ "learning_rate": 0.0001713835265466917,
920
+ "loss": 0.3385,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.78,
925
+ "learning_rate": 0.00017099983687849372,
926
+ "loss": 0.3873,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.79,
931
+ "learning_rate": 0.0001706140277741994,
932
+ "loss": 0.3257,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.79,
937
+ "learning_rate": 0.00017022611075070474,
938
+ "loss": 0.3481,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.8,
943
+ "learning_rate": 0.0001698360973878299,
944
+ "loss": 0.401,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.8,
949
+ "learning_rate": 0.00016944399932797353,
950
+ "loss": 0.3221,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.81,
955
+ "learning_rate": 0.00016904982827576498,
956
+ "loss": 0.3908,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.81,
961
+ "learning_rate": 0.0001686535959977152,
962
+ "loss": 0.3281,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.82,
967
+ "learning_rate": 0.00016825531432186543,
968
+ "loss": 0.2504,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.82,
973
+ "learning_rate": 0.00016785499513743382,
974
+ "loss": 0.3504,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.83,
979
+ "learning_rate": 0.00016745265039446106,
980
+ "loss": 0.3395,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.83,
985
+ "learning_rate": 0.00016704829210345315,
986
+ "loss": 0.3443,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.84,
991
+ "learning_rate": 0.00016664193233502316,
992
+ "loss": 0.3599,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.84,
997
+ "learning_rate": 0.00016623358321953078,
998
+ "loss": 0.3378,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.85,
1003
+ "learning_rate": 0.00016582325694672033,
1004
+ "loss": 0.364,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.85,
1009
+ "learning_rate": 0.00016541096576535671,
1010
+ "loss": 0.3096,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.86,
1015
+ "learning_rate": 0.00016499672198285996,
1016
+ "loss": 0.2976,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.86,
1021
+ "learning_rate": 0.0001645805379649377,
1022
+ "loss": 0.3313,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.87,
1027
+ "learning_rate": 0.0001641624261352161,
1028
+ "loss": 0.35,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.87,
1033
+ "learning_rate": 0.000163742398974869,
1034
+ "loss": 0.3341,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.88,
1039
+ "learning_rate": 0.00016332046902224517,
1040
+ "loss": 0.3568,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.88,
1045
+ "learning_rate": 0.00016289664887249438,
1046
+ "loss": 0.2995,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.89,
1051
+ "learning_rate": 0.00016247095117719106,
1052
+ "loss": 0.3311,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.9,
1057
+ "learning_rate": 0.00016204338864395684,
1058
+ "loss": 0.3401,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.9,
1063
+ "learning_rate": 0.0001616139740360811,
1064
+ "loss": 0.411,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.91,
1069
+ "learning_rate": 0.00016118272017214005,
1070
+ "loss": 0.3062,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.91,
1075
+ "learning_rate": 0.0001607496399256141,
1076
+ "loss": 0.3165,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.92,
1081
+ "learning_rate": 0.00016031474622450344,
1082
+ "loss": 0.3397,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.92,
1087
+ "learning_rate": 0.00015987805205094227,
1088
+ "loss": 0.2843,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.93,
1093
+ "learning_rate": 0.00015943957044081114,
1094
+ "loss": 0.3176,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.93,
1099
+ "learning_rate": 0.0001589993144833479,
1100
+ "loss": 0.3202,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.94,
1105
+ "learning_rate": 0.00015855729732075694,
1106
+ "loss": 0.295,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.94,
1111
+ "learning_rate": 0.0001581135321478169,
1112
+ "loss": 0.3332,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.95,
1117
+ "learning_rate": 0.00015766803221148673,
1118
+ "loss": 0.2974,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.95,
1123
+ "learning_rate": 0.0001572208108105103,
1124
+ "loss": 0.3369,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.96,
1129
+ "learning_rate": 0.0001567718812950194,
1130
+ "loss": 0.3598,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.96,
1135
+ "learning_rate": 0.00015632125706613532,
1136
+ "loss": 0.3692,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.97,
1141
+ "learning_rate": 0.00015586895157556854,
1142
+ "loss": 0.2853,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.97,
1147
+ "learning_rate": 0.0001554149783252175,
1148
+ "loss": 0.3254,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.98,
1153
+ "learning_rate": 0.0001549593508667653,
1154
+ "loss": 0.2956,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.98,
1159
+ "learning_rate": 0.00015450208280127543,
1160
+ "loss": 0.3405,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.99,
1165
+ "learning_rate": 0.00015404318777878544,
1166
+ "loss": 0.3127,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.99,
1171
+ "learning_rate": 0.00015358267949789966,
1172
+ "loss": 0.2814,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 1.0,
1177
+ "learning_rate": 0.00015312057170538035,
1178
+ "loss": 0.3384,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 1.0,
1183
+ "learning_rate": 0.00015265687819573712,
1184
+ "loss": 0.3027,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 1.01,
1189
+ "learning_rate": 0.00015219161281081536,
1190
+ "loss": 0.3238,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 1.01,
1195
+ "learning_rate": 0.00015172478943938287,
1196
+ "loss": 0.3162,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 1.02,
1201
+ "learning_rate": 0.0001512564220167154,
1202
+ "loss": 0.3059,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 1.0,
1207
+ "learning_rate": 0.00015078652452418063,
1208
+ "loss": 0.2869,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 1.01,
1213
+ "learning_rate": 0.0001503151109888207,
1214
+ "loss": 0.2496,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 1.01,
1219
+ "learning_rate": 0.0001498421954829336,
1220
+ "loss": 0.2783,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 1.02,
1225
+ "learning_rate": 0.00014936779212365318,
1226
+ "loss": 0.2645,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 1.02,
1231
+ "learning_rate": 0.00014889191507252742,
1232
+ "loss": 0.2581,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 1.03,
1237
+ "learning_rate": 0.00014841457853509606,
1238
+ "loss": 0.3068,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 1.03,
1243
+ "learning_rate": 0.0001479357967604663,
1244
+ "loss": 0.2443,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 1.04,
1249
+ "learning_rate": 0.00014745558404088751,
1250
+ "loss": 0.2867,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 1.04,
1255
+ "learning_rate": 0.0001469739547113246,
1256
+ "loss": 0.281,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 1.05,
1261
+ "learning_rate": 0.00014649092314903016,
1262
+ "loss": 0.3124,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 1.05,
1267
+ "learning_rate": 0.00014600650377311522,
1268
+ "loss": 0.3362,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 1.06,
1273
+ "learning_rate": 0.00014552071104411874,
1274
+ "loss": 0.2616,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 1.06,
1279
+ "learning_rate": 0.0001450335594635761,
1280
+ "loss": 0.2772,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 1.07,
1285
+ "learning_rate": 0.0001445450635735861,
1286
+ "loss": 0.3061,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 1.07,
1291
+ "learning_rate": 0.000144055237956377,
1292
+ "loss": 0.2847,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 1.08,
1297
+ "learning_rate": 0.0001435640972338709,
1298
+ "loss": 0.2663,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 1.08,
1303
+ "learning_rate": 0.00014307165606724777,
1304
+ "loss": 0.2415,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 1.09,
1309
+ "learning_rate": 0.00014257792915650728,
1310
+ "loss": 0.2644,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 1.09,
1315
+ "learning_rate": 0.00014208293124003026,
1316
+ "loss": 0.2536,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 1.1,
1321
+ "learning_rate": 0.00014158667709413876,
1322
+ "loss": 0.3251,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 1.1,
1327
+ "learning_rate": 0.00014108918153265485,
1328
+ "loss": 0.2704,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 1.11,
1333
+ "learning_rate": 0.00014059045940645833,
1334
+ "loss": 0.2876,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 1.12,
1339
+ "learning_rate": 0.00014009052560304378,
1340
+ "loss": 0.2934,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 1.12,
1345
+ "learning_rate": 0.00013958939504607565,
1346
+ "loss": 0.308,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 1.13,
1351
+ "learning_rate": 0.00013908708269494318,
1352
+ "loss": 0.2507,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 1.13,
1357
+ "learning_rate": 0.00013858360354431355,
1358
+ "loss": 0.2834,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 1.14,
1363
+ "learning_rate": 0.00013807897262368453,
1364
+ "loss": 0.3131,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 1.14,
1369
+ "learning_rate": 0.0001375732049969356,
1370
+ "loss": 0.2667,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 1.15,
1375
+ "learning_rate": 0.0001370663157618784,
1376
+ "loss": 0.2756,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 1.15,
1381
+ "learning_rate": 0.00013655832004980608,
1382
+ "loss": 0.3245,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 1.16,
1387
+ "learning_rate": 0.00013604923302504147,
1388
+ "loss": 0.2593,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 1.16,
1393
+ "learning_rate": 0.00013553906988448452,
1394
+ "loss": 0.2805,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 1.17,
1399
+ "learning_rate": 0.00013502784585715853,
1400
+ "loss": 0.2656,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 1.17,
1405
+ "learning_rate": 0.00013451557620375578,
1406
+ "loss": 0.3171,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 1.18,
1411
+ "learning_rate": 0.00013400227621618172,
1412
+ "loss": 0.2946,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 1.18,
1417
+ "learning_rate": 0.00013348796121709862,
1418
+ "loss": 0.2764,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 1.19,
1423
+ "learning_rate": 0.00013297264655946816,
1424
+ "loss": 0.3237,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 1.19,
1429
+ "learning_rate": 0.00013245634762609307,
1430
+ "loss": 0.2609,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 1.2,
1435
+ "learning_rate": 0.000131939079829158,
1436
+ "loss": 0.2394,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 1.2,
1441
+ "learning_rate": 0.00013142085860976948,
1442
+ "loss": 0.3038,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 1.21,
1447
+ "learning_rate": 0.00013090169943749476,
1448
+ "loss": 0.2791,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 1.21,
1453
+ "learning_rate": 0.00013038161780990035,
1454
+ "loss": 0.2882,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 1.22,
1459
+ "learning_rate": 0.00012986062925208914,
1460
+ "loss": 0.3005,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 1.22,
1465
+ "learning_rate": 0.00012933874931623707,
1466
+ "loss": 0.2622,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 1.23,
1471
+ "learning_rate": 0.0001288159935811289,
1472
+ "loss": 0.2972,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 1.23,
1477
+ "learning_rate": 0.000128292377651693,
1478
+ "loss": 0.2821,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 1.24,
1483
+ "learning_rate": 0.00012776791715853584,
1484
+ "loss": 0.2537,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 1.24,
1489
+ "learning_rate": 0.00012724262775747498,
1490
+ "loss": 0.2625,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 1.25,
1495
+ "learning_rate": 0.00012671652512907211,
1496
+ "loss": 0.2502,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 1.25,
1501
+ "learning_rate": 0.0001261896249781647,
1502
+ "loss": 0.243,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 1.26,
1507
+ "learning_rate": 0.00012566194303339739,
1508
+ "loss": 0.2525,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 1.26,
1513
+ "learning_rate": 0.0001251334950467522,
1514
+ "loss": 0.28,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 1.27,
1519
+ "learning_rate": 0.00012460429679307864,
1520
+ "loss": 0.27,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 1.27,
1525
+ "learning_rate": 0.00012407436406962257,
1526
+ "loss": 0.2837,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 1.28,
1531
+ "learning_rate": 0.00012354371269555477,
1532
+ "loss": 0.2582,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 1.28,
1537
+ "learning_rate": 0.00012301235851149865,
1538
+ "loss": 0.2729,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 1.29,
1543
+ "learning_rate": 0.0001224803173790573,
1544
+ "loss": 0.2568,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 1.29,
1549
+ "learning_rate": 0.00012194760518034028,
1550
+ "loss": 0.3049,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 1.3,
1555
+ "learning_rate": 0.00012141423781748913,
1556
+ "loss": 0.278,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 1.3,
1561
+ "learning_rate": 0.00012088023121220306,
1562
+ "loss": 0.2725,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 1.31,
1567
+ "learning_rate": 0.0001203456013052634,
1568
+ "loss": 0.2921,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 1.31,
1573
+ "learning_rate": 0.00011981036405605781,
1574
+ "loss": 0.6775,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 1.32,
1579
+ "learning_rate": 0.00011927453544210397,
1580
+ "loss": 0.2876,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 1.32,
1585
+ "learning_rate": 0.00011873813145857249,
1586
+ "loss": 0.2447,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 1.33,
1591
+ "learning_rate": 0.0001182011681178095,
1592
+ "loss": 0.258,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 1.34,
1597
+ "learning_rate": 0.00011766366144885877,
1598
+ "loss": 0.3096,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 1.34,
1603
+ "learning_rate": 0.00011712562749698291,
1604
+ "loss": 0.2821,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 1.35,
1609
+ "learning_rate": 0.00011658708232318482,
1610
+ "loss": 0.2885,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 1.35,
1615
+ "learning_rate": 0.00011604804200372786,
1616
+ "loss": 0.2688,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 1.36,
1621
+ "learning_rate": 0.00011550852262965622,
1622
+ "loss": 0.3084,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 1.36,
1627
+ "learning_rate": 0.00011496854030631443,
1628
+ "loss": 0.3622,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 1.37,
1633
+ "learning_rate": 0.00011442811115286669,
1634
+ "loss": 0.3177,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 1.37,
1639
+ "learning_rate": 0.00011388725130181565,
1640
+ "loss": 0.2365,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 1.38,
1645
+ "learning_rate": 0.00011334597689852076,
1646
+ "loss": 0.315,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 1.38,
1651
+ "learning_rate": 0.00011280430410071652,
1652
+ "loss": 0.2996,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 1.39,
1657
+ "learning_rate": 0.00011226224907802985,
1658
+ "loss": 0.2397,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 1.39,
1663
+ "learning_rate": 0.00011171982801149774,
1664
+ "loss": 0.2619,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 1.4,
1669
+ "learning_rate": 0.00011117705709308395,
1670
+ "loss": 0.2595,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 1.4,
1675
+ "learning_rate": 0.0001106339525251958,
1676
+ "loss": 0.3081,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 1.41,
1681
+ "learning_rate": 0.00011009053052020047,
1682
+ "loss": 0.2777,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 1.41,
1687
+ "learning_rate": 0.00010954680729994102,
1688
+ "loss": 0.2983,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 1.42,
1693
+ "learning_rate": 0.00010900279909525226,
1694
+ "loss": 0.2704,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 1.42,
1699
+ "learning_rate": 0.00010845852214547601,
1700
+ "loss": 0.3239,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 1.43,
1705
+ "learning_rate": 0.00010791399269797659,
1706
+ "loss": 0.2763,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 1.43,
1711
+ "learning_rate": 0.00010736922700765571,
1712
+ "loss": 0.2625,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 1.44,
1717
+ "learning_rate": 0.0001068242413364671,
1718
+ "loss": 0.2829,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 1.44,
1723
+ "learning_rate": 0.00010627905195293135,
1724
+ "loss": 0.3096,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 1.45,
1729
+ "learning_rate": 0.00010573367513165002,
1730
+ "loss": 0.3141,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 1.45,
1735
+ "learning_rate": 0.00010518812715282001,
1736
+ "loss": 0.2886,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 1.46,
1741
+ "learning_rate": 0.00010464242430174737,
1742
+ "loss": 0.3128,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 1.46,
1747
+ "learning_rate": 0.00010409658286836143,
1748
+ "loss": 0.2515,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 1.47,
1753
+ "learning_rate": 0.0001035506191467283,
1754
+ "loss": 0.2786,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 1.47,
1759
+ "learning_rate": 0.00010300454943456457,
1760
+ "loss": 0.2659,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 1.48,
1765
+ "learning_rate": 0.00010245839003275075,
1766
+ "loss": 0.3111,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 1.48,
1771
+ "learning_rate": 0.00010191215724484476,
1772
+ "loss": 0.2724,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 1.49,
1777
+ "learning_rate": 0.0001013658673765951,
1778
+ "loss": 0.2643,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 1.49,
1783
+ "learning_rate": 0.00010081953673545432,
1784
+ "loss": 0.2959,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 1.5,
1789
+ "learning_rate": 0.00010027318163009201,
1790
+ "loss": 0.32,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 1.5,
1795
+ "learning_rate": 9.9726818369908e-05,
1796
+ "loss": 0.2284,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 1.51,
1801
+ "learning_rate": 9.918046326454568e-05,
1802
+ "loss": 0.2774,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 1.51,
1807
+ "learning_rate": 9.863413262340491e-05,
1808
+ "loss": 0.2739,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 1.52,
1813
+ "learning_rate": 9.808784275515525e-05,
1814
+ "loss": 0.2802,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 1.52,
1819
+ "learning_rate": 9.754160996724927e-05,
1820
+ "loss": 0.2807,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 1.53,
1825
+ "learning_rate": 9.699545056543547e-05,
1826
+ "loss": 0.3228,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 1.53,
1831
+ "learning_rate": 9.644938085327173e-05,
1832
+ "loss": 0.2623,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 1.54,
1837
+ "learning_rate": 9.590341713163858e-05,
1838
+ "loss": 0.2146,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 1.54,
1843
+ "learning_rate": 9.535757569825265e-05,
1844
+ "loss": 0.3186,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 1.55,
1849
+ "learning_rate": 9.481187284718006e-05,
1850
+ "loss": 0.2684,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 1.55,
1855
+ "learning_rate": 9.426632486834998e-05,
1856
+ "loss": 0.2485,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 1.56,
1861
+ "learning_rate": 9.372094804706867e-05,
1862
+ "loss": 0.2952,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 1.57,
1867
+ "learning_rate": 9.317575866353292e-05,
1868
+ "loss": 0.2922,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 1.57,
1873
+ "learning_rate": 9.263077299234433e-05,
1874
+ "loss": 0.2877,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 1.58,
1879
+ "learning_rate": 9.208600730202339e-05,
1880
+ "loss": 0.3022,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 1.58,
1885
+ "learning_rate": 9.1541477854524e-05,
1886
+ "loss": 0.3008,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 1.59,
1891
+ "learning_rate": 9.099720090474779e-05,
1892
+ "loss": 0.2642,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 1.59,
1897
+ "learning_rate": 9.0453192700059e-05,
1898
+ "loss": 0.2634,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 1.6,
1903
+ "learning_rate": 8.990946947979954e-05,
1904
+ "loss": 0.2458,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 1.6,
1909
+ "learning_rate": 8.936604747480422e-05,
1910
+ "loss": 0.2905,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 1.61,
1915
+ "learning_rate": 8.882294290691609e-05,
1916
+ "loss": 0.3353,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 1.61,
1921
+ "learning_rate": 8.828017198850227e-05,
1922
+ "loss": 0.235,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 1.62,
1927
+ "learning_rate": 8.773775092197017e-05,
1928
+ "loss": 0.2419,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 1.62,
1933
+ "learning_rate": 8.719569589928353e-05,
1934
+ "loss": 0.2427,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 1.63,
1939
+ "learning_rate": 8.665402310147924e-05,
1940
+ "loss": 0.3272,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 1.63,
1945
+ "learning_rate": 8.611274869818437e-05,
1946
+ "loss": 0.2641,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 1.64,
1951
+ "learning_rate": 8.557188884713333e-05,
1952
+ "loss": 0.323,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 1.64,
1957
+ "learning_rate": 8.503145969368562e-05,
1958
+ "loss": 0.3062,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 1.65,
1963
+ "learning_rate": 8.449147737034379e-05,
1964
+ "loss": 0.2871,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 1.65,
1969
+ "learning_rate": 8.395195799627216e-05,
1970
+ "loss": 0.2646,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 1.66,
1975
+ "learning_rate": 8.341291767681523e-05,
1976
+ "loss": 0.2825,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 1.66,
1981
+ "learning_rate": 8.287437250301709e-05,
1982
+ "loss": 0.2766,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 1.67,
1987
+ "learning_rate": 8.233633855114127e-05,
1988
+ "loss": 0.2694,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 1.67,
1993
+ "learning_rate": 8.179883188219053e-05,
1994
+ "loss": 0.2568,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 1.68,
1999
+ "learning_rate": 8.126186854142752e-05,
2000
+ "loss": 0.2722,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 1.68,
2005
+ "learning_rate": 8.072546455789604e-05,
2006
+ "loss": 0.2528,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 1.69,
2011
+ "learning_rate": 8.018963594394221e-05,
2012
+ "loss": 0.2779,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 1.69,
2017
+ "learning_rate": 7.965439869473664e-05,
2018
+ "loss": 0.3015,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 1.7,
2023
+ "learning_rate": 7.911976878779696e-05,
2024
+ "loss": 0.3106,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 1.7,
2029
+ "learning_rate": 7.858576218251089e-05,
2030
+ "loss": 0.2919,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 1.71,
2035
+ "learning_rate": 7.805239481965976e-05,
2036
+ "loss": 0.2134,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 1.71,
2041
+ "learning_rate": 7.75196826209427e-05,
2042
+ "loss": 0.2825,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 1.72,
2047
+ "learning_rate": 7.698764148850137e-05,
2048
+ "loss": 0.6593,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 1.72,
2053
+ "learning_rate": 7.645628730444524e-05,
2054
+ "loss": 0.2553,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 1.73,
2059
+ "learning_rate": 7.592563593037746e-05,
2060
+ "loss": 0.2711,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 1.73,
2065
+ "learning_rate": 7.539570320692137e-05,
2066
+ "loss": 0.2259,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 1.74,
2071
+ "learning_rate": 7.486650495324783e-05,
2072
+ "loss": 0.298,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 1.74,
2077
+ "learning_rate": 7.433805696660266e-05,
2078
+ "loss": 0.2845,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 1.75,
2083
+ "learning_rate": 7.381037502183528e-05,
2084
+ "loss": 0.2418,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 1.75,
2089
+ "learning_rate": 7.328347487092791e-05,
2090
+ "loss": 0.2922,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 1.76,
2095
+ "learning_rate": 7.275737224252503e-05,
2096
+ "loss": 0.2081,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 1.76,
2101
+ "learning_rate": 7.223208284146421e-05,
2102
+ "loss": 0.617,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 1.77,
2107
+ "learning_rate": 7.170762234830699e-05,
2108
+ "loss": 0.2832,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 1.77,
2113
+ "learning_rate": 7.118400641887115e-05,
2114
+ "loss": 0.3025,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 1.78,
2119
+ "learning_rate": 7.066125068376297e-05,
2120
+ "loss": 0.2848,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 1.79,
2125
+ "learning_rate": 7.013937074791089e-05,
2126
+ "loss": 0.2231,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 1.79,
2131
+ "learning_rate": 6.961838219009967e-05,
2132
+ "loss": 0.3314,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 1.8,
2137
+ "learning_rate": 6.909830056250527e-05,
2138
+ "loss": 0.6465,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 1.8,
2143
+ "learning_rate": 6.857914139023057e-05,
2144
+ "loss": 0.2569,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 1.81,
2149
+ "learning_rate": 6.8060920170842e-05,
2150
+ "loss": 0.2786,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 1.81,
2155
+ "learning_rate": 6.754365237390696e-05,
2156
+ "loss": 0.2755,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 1.82,
2161
+ "learning_rate": 6.702735344053187e-05,
2162
+ "loss": 0.2787,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 1.82,
2167
+ "learning_rate": 6.651203878290139e-05,
2168
+ "loss": 0.2526,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 1.83,
2173
+ "learning_rate": 6.59977237838183e-05,
2174
+ "loss": 0.2558,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 1.83,
2179
+ "learning_rate": 6.548442379624424e-05,
2180
+ "loss": 0.2445,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 1.84,
2185
+ "learning_rate": 6.497215414284146e-05,
2186
+ "loss": 0.2696,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 1.84,
2191
+ "learning_rate": 6.446093011551551e-05,
2192
+ "loss": 0.5883,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 1.85,
2197
+ "learning_rate": 6.395076697495854e-05,
2198
+ "loss": 0.2489,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 1.85,
2203
+ "learning_rate": 6.344167995019395e-05,
2204
+ "loss": 0.2775,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 1.86,
2209
+ "learning_rate": 6.29336842381216e-05,
2210
+ "loss": 0.2961,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 1.86,
2215
+ "learning_rate": 6.242679500306443e-05,
2216
+ "loss": 0.2515,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 1.87,
2221
+ "learning_rate": 6.192102737631551e-05,
2222
+ "loss": 0.2506,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 1.87,
2227
+ "learning_rate": 6.141639645568646e-05,
2228
+ "loss": 0.2633,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 1.88,
2233
+ "learning_rate": 6.091291730505684e-05,
2234
+ "loss": 0.2475,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 1.88,
2239
+ "learning_rate": 6.041060495392436e-05,
2240
+ "loss": 0.2636,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 1.89,
2245
+ "learning_rate": 5.9909474396956246e-05,
2246
+ "loss": 0.3151,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 1.89,
2251
+ "learning_rate": 5.9409540593541645e-05,
2252
+ "loss": 0.3158,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 1.9,
2257
+ "learning_rate": 5.8910818467345185e-05,
2258
+ "loss": 0.2886,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 1.9,
2263
+ "learning_rate": 5.8413322905861254e-05,
2264
+ "loss": 0.2976,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 1.91,
2269
+ "learning_rate": 5.791706875996974e-05,
2270
+ "loss": 0.2651,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 1.91,
2275
+ "learning_rate": 5.7422070843492734e-05,
2276
+ "loss": 0.3056,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 1.92,
2281
+ "learning_rate": 5.692834393275226e-05,
2282
+ "loss": 0.2226,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 1.92,
2287
+ "learning_rate": 5.643590276612909e-05,
2288
+ "loss": 0.2415,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 1.93,
2293
+ "learning_rate": 5.594476204362303e-05,
2294
+ "loss": 0.3688,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 1.93,
2299
+ "learning_rate": 5.5454936426413884e-05,
2300
+ "loss": 0.28,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 1.94,
2305
+ "learning_rate": 5.496644053642394e-05,
2306
+ "loss": 0.3079,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 1.94,
2311
+ "learning_rate": 5.447928895588128e-05,
2312
+ "loss": 0.259,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 1.95,
2317
+ "learning_rate": 5.399349622688479e-05,
2318
+ "loss": 0.2649,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 1.95,
2323
+ "learning_rate": 5.350907685096983e-05,
2324
+ "loss": 0.2557,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 1.96,
2329
+ "learning_rate": 5.302604528867544e-05,
2330
+ "loss": 0.2479,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 1.96,
2335
+ "learning_rate": 5.254441595911255e-05,
2336
+ "loss": 0.277,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 1.97,
2341
+ "learning_rate": 5.206420323953374e-05,
2342
+ "loss": 0.2504,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 1.97,
2347
+ "learning_rate": 5.1585421464903994e-05,
2348
+ "loss": 0.2799,
2349
+ "step": 390
2350
+ }
2351
+ ],
2352
+ "logging_steps": 1,
2353
+ "max_steps": 585,
2354
+ "num_input_tokens_seen": 0,
2355
+ "num_train_epochs": 3,
2356
+ "save_steps": 195,
2357
+ "total_flos": 3.0058143620708434e+18,
2358
+ "train_batch_size": 10,
2359
+ "trial_name": null,
2360
+ "trial_params": null
2361
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8aaf56eb46f6b3f0065a4935e465dc8c5c56509e782f2195dcea6fea3cdfa92
3
+ size 6200