--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: openai/whisper-large-v2 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_cmu_9h type: rishabhjain16/infer_cmu_9h config: en split: test metrics: - type: wer value: 15.22 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_pfs type: rishabhjain16/infer_pfs config: en split: test metrics: - type: wer value: 2.88 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/infer_myst type: rishabhjain16/infer_myst config: en split: test metrics: - type: wer value: 15.79 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: rishabhjain16/libritts_dev_clean type: rishabhjain16/libritts_dev_clean config: en split: test metrics: - type: wer value: 5.1 name: WER --- # openai/whisper-large-v2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1534 - Wer: 145.6786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0799 | 2.03 | 500 | 0.1010 | 28.1322 | | 0.0239 | 5.01 | 1000 | 0.1388 | 161.0139 | | 0.0066 | 7.03 | 1500 | 0.1221 | 99.3747 | | 0.0007 | 10.01 | 2000 | 0.1295 | 250.8822 | | 0.0007 | 12.04 | 2500 | 0.1423 | 77.2203 | | 0.0003 | 15.02 | 3000 | 0.1480 | 149.4380 | | 0.0001 | 17.05 | 3500 | 0.1518 | 141.5842 | | 0.0001 | 20.02 | 4000 | 0.1534 | 145.6786 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.9.1.dev0 - Tokenizers 0.13.2