File size: 1,699 Bytes
f8010c6
 
 
 
48a95c0
f8010c6
 
48a95c0
 
f8010c6
 
 
 
 
 
 
 
 
 
48a95c0
 
 
 
f8010c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48a95c0
 
f8010c6
 
 
 
 
 
 
48a95c0
 
 
 
 
 
 
 
 
 
 
f8010c6
 
 
 
48a95c0
f8010c6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
language:
- hi
license: apache-2.0
base_model: reproductionguru/voicetest6
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# base

This model is a fine-tuned version of [reproductionguru/voicetest6](https://huggingface.co/reproductionguru/voicetest6) on the tutorial Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4757
- Wer: 21.0355

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.4953        | 0.4   | 1000 | 0.6332          | 30.4347 |
| 0.408         | 0.8   | 2000 | 0.5400          | 25.3584 |
| 0.2074        | 1.2   | 3000 | 0.5097          | 23.7629 |
| 0.1796        | 1.61  | 4000 | 0.4885          | 21.6339 |
| 0.1583        | 2.01  | 5000 | 0.4757          | 21.0355 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0