--- language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: base results: [] --- # base This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the tutorial Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.5910 - Wer: 95.8127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.6188 | 0.64 | 1000 | 0.6863 | 79.4283 | | 0.3827 | 1.28 | 2000 | 0.6164 | 80.7766 | | 0.3412 | 1.93 | 3000 | 0.5910 | 95.8127 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1