reichenbach commited on
Commit
e3a02d3
1 Parent(s): 86dba2f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -14
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.79
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.6637
36
- - Accuracy: 0.79
37
 
38
  ## Model description
39
 
@@ -59,22 +59,32 @@ The following hyperparameters were used during training:
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
- - num_epochs: 10
63
 
64
  ### Training results
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
- | 1.9842 | 1.0 | 113 | 1.8107 | 0.53 |
69
- | 1.3426 | 2.0 | 226 | 1.2064 | 0.7 |
70
- | 1.0421 | 3.0 | 339 | 1.0109 | 0.71 |
71
- | 0.871 | 4.0 | 452 | 0.8944 | 0.72 |
72
- | 0.6817 | 5.0 | 565 | 0.7643 | 0.77 |
73
- | 0.4104 | 6.0 | 678 | 0.7248 | 0.79 |
74
- | 0.4996 | 7.0 | 791 | 0.6640 | 0.79 |
75
- | 0.2037 | 8.0 | 904 | 0.6693 | 0.78 |
76
- | 0.3115 | 9.0 | 1017 | 0.6709 | 0.78 |
77
- | 0.1829 | 10.0 | 1130 | 0.6637 | 0.79 |
 
 
 
 
 
 
 
 
 
 
78
 
79
 
80
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.85
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.7011
36
+ - Accuracy: 0.85
37
 
38
  ## Model description
39
 
 
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 20
63
 
64
  ### Training results
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 2.1633 | 1.0 | 113 | 2.0443 | 0.48 |
69
+ | 1.5137 | 2.0 | 226 | 1.4296 | 0.63 |
70
+ | 1.2242 | 3.0 | 339 | 1.0546 | 0.72 |
71
+ | 0.9275 | 4.0 | 452 | 0.9730 | 0.73 |
72
+ | 0.6252 | 5.0 | 565 | 0.6862 | 0.84 |
73
+ | 0.403 | 6.0 | 678 | 0.5890 | 0.8 |
74
+ | 0.5256 | 7.0 | 791 | 0.5414 | 0.84 |
75
+ | 0.124 | 8.0 | 904 | 0.5469 | 0.81 |
76
+ | 0.1207 | 9.0 | 1017 | 0.5683 | 0.82 |
77
+ | 0.0434 | 10.0 | 1130 | 0.6445 | 0.83 |
78
+ | 0.0107 | 11.0 | 1243 | 0.7085 | 0.83 |
79
+ | 0.134 | 12.0 | 1356 | 0.6363 | 0.85 |
80
+ | 0.0056 | 13.0 | 1469 | 0.6332 | 0.85 |
81
+ | 0.0045 | 14.0 | 1582 | 0.6881 | 0.85 |
82
+ | 0.004 | 15.0 | 1695 | 0.6204 | 0.86 |
83
+ | 0.0033 | 16.0 | 1808 | 0.7015 | 0.84 |
84
+ | 0.046 | 17.0 | 1921 | 0.6880 | 0.85 |
85
+ | 0.0028 | 18.0 | 2034 | 0.6841 | 0.84 |
86
+ | 0.0027 | 19.0 | 2147 | 0.6894 | 0.85 |
87
+ | 0.0028 | 20.0 | 2260 | 0.7011 | 0.85 |
88
 
89
 
90
  ### Framework versions