reichenbach commited on
Commit
47cd580
1 Parent(s): 420b496

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -25
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.85
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.7011
36
- - Accuracy: 0.85
37
 
38
  ## Model description
39
 
@@ -59,37 +59,32 @@ The following hyperparameters were used during training:
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
- - num_epochs: 20
63
 
64
  ### Training results
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
- | 2.1633 | 1.0 | 113 | 2.0443 | 0.48 |
69
- | 1.5137 | 2.0 | 226 | 1.4296 | 0.63 |
70
- | 1.2242 | 3.0 | 339 | 1.0546 | 0.72 |
71
- | 0.9275 | 4.0 | 452 | 0.9730 | 0.73 |
72
- | 0.6252 | 5.0 | 565 | 0.6862 | 0.84 |
73
- | 0.403 | 6.0 | 678 | 0.5890 | 0.8 |
74
- | 0.5256 | 7.0 | 791 | 0.5414 | 0.84 |
75
- | 0.124 | 8.0 | 904 | 0.5469 | 0.81 |
76
- | 0.1207 | 9.0 | 1017 | 0.5683 | 0.82 |
77
- | 0.0434 | 10.0 | 1130 | 0.6445 | 0.83 |
78
- | 0.0107 | 11.0 | 1243 | 0.7085 | 0.83 |
79
- | 0.134 | 12.0 | 1356 | 0.6363 | 0.85 |
80
- | 0.0056 | 13.0 | 1469 | 0.6332 | 0.85 |
81
- | 0.0045 | 14.0 | 1582 | 0.6881 | 0.85 |
82
- | 0.004 | 15.0 | 1695 | 0.6204 | 0.86 |
83
- | 0.0033 | 16.0 | 1808 | 0.7015 | 0.84 |
84
- | 0.046 | 17.0 | 1921 | 0.6880 | 0.85 |
85
- | 0.0028 | 18.0 | 2034 | 0.6841 | 0.84 |
86
- | 0.0027 | 19.0 | 2147 | 0.6894 | 0.85 |
87
- | 0.0028 | 20.0 | 2260 | 0.7011 | 0.85 |
88
 
89
 
90
  ### Framework versions
91
 
92
  - Transformers 4.31.0
93
  - Pytorch 2.0.0
94
- - Datasets 2.13.1
95
  - Tokenizers 0.13.3
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.83
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.8933
36
+ - Accuracy: 0.83
37
 
38
  ## Model description
39
 
 
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 15
63
 
64
  ### Training results
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 2.1059 | 1.0 | 113 | 1.9709 | 0.39 |
69
+ | 1.4561 | 2.0 | 226 | 1.2865 | 0.59 |
70
+ | 1.03 | 3.0 | 339 | 0.9918 | 0.75 |
71
+ | 0.8979 | 4.0 | 452 | 0.8700 | 0.77 |
72
+ | 0.6697 | 5.0 | 565 | 0.7090 | 0.79 |
73
+ | 0.3289 | 6.0 | 678 | 0.6646 | 0.77 |
74
+ | 0.3612 | 7.0 | 791 | 0.6384 | 0.83 |
75
+ | 0.068 | 8.0 | 904 | 0.5989 | 0.85 |
76
+ | 0.1159 | 9.0 | 1017 | 0.7136 | 0.83 |
77
+ | 0.0228 | 10.0 | 1130 | 0.8329 | 0.84 |
78
+ | 0.0484 | 11.0 | 1243 | 0.8401 | 0.84 |
79
+ | 0.0283 | 12.0 | 1356 | 0.8522 | 0.84 |
80
+ | 0.008 | 13.0 | 1469 | 0.8865 | 0.84 |
81
+ | 0.0066 | 14.0 | 1582 | 0.9048 | 0.85 |
82
+ | 0.0067 | 15.0 | 1695 | 0.8933 | 0.83 |
 
 
 
 
 
83
 
84
 
85
  ### Framework versions
86
 
87
  - Transformers 4.31.0
88
  - Pytorch 2.0.0
89
+ - Datasets 2.14.4
90
  - Tokenizers 0.13.3