--- tags: - autotrain - tabular - classification - tabular-classification datasets: - reesu/autotrain-data-wine_quality co2_eq_emissions: emissions: 0.8738507920594603 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 3195889865 - CO2 Emissions (in grams): 0.8739 ## Validation Metrics - Loss: 15.722 - Accuracy: 0.545 - Macro F1: 0.226 - Micro F1: 0.545 - Weighted F1: 0.500 - Macro Precision: 0.260 - Micro Precision: 0.545 - Weighted Precision: 0.507 - Macro Recall: 0.240 - Micro Recall: 0.545 - Weighted Recall: 0.545 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```