--- library_name: peft model-index: - name: gembode-7b-it results: - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 49.34 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b-it name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 36.58 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b-it name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 34.76 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b-it name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 79.09 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b-it name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 15 metrics: - type: pearson value: 64.95 name: pearson source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b-it name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 64.67 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b-it name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 86.27 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b-it name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 63.61 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b-it name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia/tweetsentbr_fewshot split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 66.17 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=recogna-nlp/gembode-7b-it name: Open Portuguese LLM Leaderboard --- # gembode-7b-it
GemmBode é um modelo de linguagem ajustado para o idioma português, desenvolvido a partir do modelo Gemma-7b-it fornecido pela [Google](https://huggingface.co/google/gemma-7b-it). ## Características Principais - **Modelo Base:** Gemma-7b-it, criado pela Google, com 7 bilhões de parâmetros. - **Dataset para Fine-tuning:** [UltraAlpaca](https://huggingface.co/datasets/recogna-nlp/ultra-alpaca-ptbr) - **Treinamento:** O treinamento foi realizado a partir do fine-tuning, com QLoRA do gemma-7b-it. # Resultados da avaliação do Open Portuguese LLM Leaderboard Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/recogna-nlp/gembode-7b-it) and on the [🚀 Open Portuguese LLM Leaderboard](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard) | Metric | Value | |--------------------------|--------| |Average |**60.6**| |ENEM Challenge (No Images)| 49.34| |BLUEX (No Images) | 36.58| |OAB Exams | 34.76| |Assin2 RTE | 79.09| |Assin2 STS | 64.95| |FaQuAD NLI | 64.67| |HateBR Binary | 86.27| |PT Hate Speech Binary | 63.61| |tweetSentBR | 66.17|